Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn cho mình cách giải với
Tặng đúng cho bạn trước
a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
góc ABD=gócHBD
=>ΔBAD=ΔBHD
=>BA=BH
b: Tham khảo:
a ) xét 2 tam giác BAD và tam giác BHD (góc A= góc H= 90 độ)
ta có: cạnh huyền BD chung
góc ABD= góc HBD (vì BD là phân giác góc B)
=>tam giác BAD=tam giác BHD(cạnh huyền-góc nhọn)
<=>BA=BH (2 cạnh tương ứng)
: -Kéo dài EK cắt đường thẳng vuông góc với AB kẻ từ B tại Q.
-Chứng minh được: AB=AE=BQ. Mà theo phần a), ta có: BA=BH => BH=BQ.
=> tam giác BHK= tam giác BQK( cạnh huyền- cạnh góc vuông).
=> góc HBK= góc QBK. Mà theo phần a), ta có: góc ABD= góc DBH.
=> góc DBK= 1/2.góc ABD. Mà góc ABD= 90 độ.
=> góc DBK=45 độ.(đpcm)
a)xét 2 tam giác BAD và tam giác BHD ( góc A = góc H = 90 độ )
ta có cạnh huyền BD chung
góc ABD = góc HBD ( vì BD là phân giác góc B )
=> tam giác BAD = BHD ( cạnh huyền - góc nhọn )
<=> BA = BH ( 2 cạnh tương ứng )
: kéo dài EK cắt đường thẳng vuông góc với AB kẻ từ B tại Q
- chứng minh được AB = AE = BQ ( theo phần a ) ta có BA = BH => BH = BQ
tam giác BHK = tam giác BQK ( cạnh huyền - góc vuông )
góc HBK = QBK ( theo phần a ) ta có góc ABD = DBH
góc DBK = 1/2 góc ABD . Mà góc ABD = 90 độ
góc DBK = 45 độ (đpcm)
MK LM RỒI NHÁ NHỚ K VÀ ĐỂ \(AVATAR\)MỘT TUẦN ĐẤY NHÉ ^^ TKS BN
A C B D H E K F
a) Xét tam giác BAD và BHD có:
\(\widehat{BAD}=\widehat{BHD}=90^o\)
BD chung
\(\widehat{ABD}=\widehat{HBD}\)
\(\Rightarrow\Delta BAD=\Delta BHD\) (Cạnh huyền - góc nhọn)
Vậy nên BA = BH (Hai cạnh tương ứng)
b) Kẻ tia Bx vuông góc BA, cắt tia EK tại F.
Ta có ngay BA = AE = BF nên BH = BF.
Từ đó suy ra \(\Delta BHK=\Delta BFK\) (Cạnh huyền - cạnh góc vuông)
Khi đó ta có: \(\widehat{HBK}=\widehat{FBK}\)
Mà \(\widehat{ABD}=\widehat{HBD}\) nên \(\widehat{DBK}=\widehat{DBH}+\widehat{HBK}=\frac{\widehat{ABF}}{2}=45^o\)
c) Ta có do các cặp tam giác bằng nhau (cma, cmb) nên DH = DA ; HK = KF
Vậy thì \(P_{DKE}=DE+DK+DK=DE+DK+DH+HK\)
\(=DE+DA+KE+KF=AE+EF=2AB=8\left(cm\right)\)