K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2018

a)  Xét 2 tam giác vuông:   \(\Delta ABM\) và    \(\Delta EBM\) có:

   \(\widehat{ABM}=\widehat{EBM}\)(gt)

  \(BM:\) CHUNG

suy ra:    \(\Delta ABM=\Delta EBM\)  (CH_GN)

b)   \(\Delta ABM=\Delta EBM\)

\(\Rightarrow\)\(AB=EB\)  =>    B   thuộc trung trực AE

         \(MA=ME\) =>   M   thuộc trung tính   AE 

suy ra:   BM   là trung trực AE

c)    \(\Delta EMC\) vuông tại  E 

=>   \(EM< MC\)

mà   \(EM=AM\)

\(\Rightarrow\)\(AM< MC\)

Bài 1 : Cho tAm giác cân ABC có <BAC=120 độ. Vẽ đường cao AM ( M thuộc BC ) a) Chứng mình rằng : CM=MB và AM là tia phân giác của <BACb) Kẻ MD vuông góc với AB ( D thuộc AB), kẻ ME vuông góc với AC ( E thuộc AC). Chứng minh tam giác ADE cân và DE // BC.c) Chứng minh rằng tam giác MDE đềud) Đường vuông góc với BC kẻ từ C cắt tia BA tại F. Tính độ dài cạnh AF biết CF = 6 cmBài 2: Cho tam giác ABC vuông tại B,...
Đọc tiếp

Bài 1 : Cho tAm giác cân ABC có <BAC=120 độ. Vẽ đường cao AM ( M thuộc BC )

 a) Chứng mình rằng : CM=MB và AM là tia phân giác của <BAC

b) Kẻ MD vuông góc với AB ( D thuộc AB), kẻ ME vuông góc với AC ( E thuộc AC). Chứng minh tam giác ADE cân và DE // BC.

c) Chứng minh rằng tam giác MDE đều

d) Đường vuông góc với BC kẻ từ C cắt tia BA tại F. Tính độ dài cạnh AF biết CF = 6 cm

Bài 2: Cho tam giác ABC vuông tại B, kẻ AI là tia phân giác của góc BAC, IH vuông góc với AC tại H.

a. Chứng minh tam giác ABI = tam giác AHI

b. HI  cắt AB tại K. Chứng tỏ rằng BK=HC

c. Chứng minh rằng BH // KC

d. Qua C kẻ đường thẳng song song với HK, cắt AI tại O. Tìm điều kiện của tam giác ABC để tam giác CIO đều

Bài 3: Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC ( H thuộc BC)

a.  Chứng minh : tam giác AHB= tam giác AHC

b. Gỉa sử AB = AC = 5cm, BC = 8cm. Tính độ dài AH

c. Trân tia đối của tai HA lấy điểm M sao cho HM - HA. chứng minh tam giác ABM cân

d. Chứng minh BM // AC

0
6 tháng 5 2018


A B C D M

a) Xét 2 tam giác vuông ABD, ADE ta có:

\(\widehat{BAD}\)=\(\widehat{DAE}\)(GT)

\(AD\)CHUNG

Suy ra: tam giác ADB=tam giác ADE (ch-gn)

b) Bạn ơi, câu này ở đâu ra có A vậy bạn?

Bạn vào nhắn tin với mình để giải tiếp nha! ><

11 tháng 2 2018

a)  2 tam giác = nhau (cạnh huyền góc nhọn )

b) gọi i guiao điểm BM và AE .2 tam giác trên bằng nhau => AB=BE Nên tam giác ABE cân tại B dễ dàng cm 2 tam giác ABi và BIE =nhau theo trường hoợ (g-c-g).tự cm rta đc vuông góc

c) Xét 2 tam giác MEC và AMN . góc MAB =90 độ,góc MEC= 90 độ. AM=ME ( vì tam giacs ABM= tam giác BEM). gocs AMN= gocs EMC.xong 2 tam giác bằng nhau theo trường hợp (g-c-g)

DD
28 tháng 3 2021

Bạn tự vẽ hình nhé. 

a) Xét tam giác \(ABM\)và tam giác \(NBM\)có: 

\(\widehat{MAB}=\widehat{MNB}\left(=90^o\right)\)

\(MB\)cạnh chung

\(\widehat{MBA}=\widehat{MBN}\)(vì \(BM\)là tia phân giác \(\widehat{ABN}\))

suy ra \(\Delta ABM=\Delta NBM\)(cạnh huyền - góc nhọn)

\(\Rightarrow\widehat{AMB}=\widehat{NMB}\)(Hai góc tương ứng) 

suy ra \(MB\)là tia phân giác góc \(AMN\).

b) Vì \(NK//BM\)nên \(\widehat{BMN}=\widehat{MNK}\)(hai góc so le trong) 

và \(\widehat{BMA}=\widehat{NKM}\)(Hai góc đồng vị) 

mà \(\widehat{AMB}=\widehat{NMB}\)(theo a)) 

suy ra \(\widehat{MNK}=\widehat{NKM}\)suy ra tam giác \(MNK\)cân tại \(M\).

c) Vì \(\Delta ABM=\Delta NBM\)nên

+) \(MN=MA\)(Hai cạnh tương ứng) suy ra \(M\)thuộc đường trung trực của \(AN\).

+) \(BN=BA\)(Hai cạnh tương ứng) suy ra \(B\)thuộc đường trung trực của \(AN\).

suy ra \(BM\)là đường trung trực của \(AN\)\(\Rightarrow BM\perp AN\).

mà \(NK//BM\)suy ra \(AN\perp NK\).

Trong tam giác vuông \(ANK\)\(AN< AK\)(cạnh góc huyền lớn hơn cạnh góc vuông).

d) \(K\)là trung điểm \(MC\)suy ra \(MK=\frac{1}{2}MC\)mà \(MN=MK\)(do tam giác \(MNK\)cân tại \(M\))

suy ra \(MN=\frac{1}{2}MC\).

Trong tam giác vuông, cạnh góc vuông bằng \(\frac{1}{2}\)cạnh huyền thì góc đối diện với cạnh góc vuông đó bằng \(30^o\).

Do đó \(\widehat{C}=30^o\).

Vậy tam giác vuông \(ABC\)cần thêm điều kiện \(\widehat{C}=30^o\).

9 tháng 1 2019

Hình tự vẽ

a, \(\Delta BAM\)và \(\Delta BDM\)

\(\widehat{ABM}=\widehat{DBM}\left(gt\right)\)

\(AM\): cạnh chung 

\(\widehat{BAM}=\widehat{BDM}\left(=90^o\right)\)

\(\Rightarrow\Delta BAM=\Delta BDM\left(ch-gn\right)\)

\(\Rightarrow BA=BD\)(2 cạnh tương ứng )

Để nghĩ tiếp :(

27 tháng 3 2020

Ta có:

∠AMB+∠ABM=90o

∠BMD+∠MBD=900

Mà ∠AMB=∠BMD (gt)

=> ∠ABM=∠MBD

Xét ΔBAM và ΔBAM có:

∠ABM=∠MBD (gt)

BM  chung

∠ABM=∠MBD (cmt)

=>  ΔBAM = ΔBAM (g-c-g)

=> BA=BD (2 cạnh tương ứng)

b,Xét ΔABC và ΔDBE có:

∠ABC  chung

∠BAC=∠BDM=90o

BA=BD (cmt)

=> ΔABC = ΔDBE (g-c-g)

c,Ta có

BC⊥ED

AK⊥ED

=>  BC//AK hay BC//AN

=> ∠ANM=∠MBC ( 2 góc slt) (1)

Mà:

DH⊥AC

BA⊥AC

=> BA//DH hay BA//DN

=> ∠MND=∠ABM ( 2 góc so le trong) (2)

Mà ∠ABM=∠MBD ( vì BM là tia phân giác của góc ABC)

Từ(1) và (2) =>∠ANM=∠MND

=> NM là tia phân giác của góc HMK

d,Ta có BM là tia phân giác của góc ABC (3)

Và NM là tia phân giác của góc HMK

Vì ∠ANM=∠MBC

    ∠MND=∠ABM

=> ∠ANM=∠MBC=∠MND=∠ABM

=> BN là tia phân giác của góc ABC (4)

Từ (3) và (4) => B,M,N thẳng hàng

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:a) BD là đường trung trực của AE.b) AD<DCc) Ba điểm E, D, F thẳng hàngBài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.a) Tính BCb) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCBc) Trên tia đối của tia DB lấy điểm E sao cho...
Đọc tiếp

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:

a) BD là đường trung trực của AE.

b) AD<DC

c) Ba điểm E, D, F thẳng hàng


Bài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.

a) Tính BC

b) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCB

c) Trên tia đối của tia DB lấy điểm E sao cho DE=DC. Chứng minh tam giác BCE vuông

d)Chứng minh:DF là phân giác của góc ADE và BE vuông góc CF


Bải 3: Cho tam giác đều ABC. Tia phân giác góc B cắt cạnh AC ở M. Từ A kẻ đường thẳng vuông góc với AB cắt các tia BM, BC lần lượt ở M và E. Chứng minh:

a) Tam giác ANC là tam giác cân

b) NC vuông góc BC

c) Tam giác AEC là tam giác cân

d) So sánh BC và NE


Bài 4: Cho tam giác nhọn ABC, kẻ BM vuông góc AC, CN vuông góc AB. Trên tia đối của tia BM lấy điểm D sao cho BD=AC, trên tia đối của tia CN lấy điểm E sao cho CE=AB. Chứng minh:

a) Góc ACE= góc ABD

b) Tam giác ABD = tam giác ECA

c) Tam giác AED là tam giác vuông cân

0