K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2017

vì AM là trung tuyến của tam giác vuông ABC (M là trung điểm của cạnh BC)

=>AM=1/2*BC=BM=CM

xét tam giácBMA và tam giác DMC có : 

AM=MD(gt)

góc BMA=góc DMC (đ đ)

BM=MC(gt)

=> 2 tam giác đó bằng nhau(c-g-c)

=>ACB=ADC(2GTU) 

AB=DC(2ctu)

ta có BM+CM =BC, AM+MD=AD

mà BM=CM, AM=MD

và  AM=BM=CM

=> BC=AD

xét tam giác BAC và tam giác DCA có :

BA=DC (cmt)

AC là cạnh chung 

BC=AD (cmt)

=> 2 tam giác đó bằng nhau (c--c-c)=>BAC=DCA=90 độ ( 2gtu)=>DC vuông góc vs AC

2 tháng 4 2017

b) tam giác MAC= tam giác MAE (cgc)=> AC= AE (2ctu)=>CAE cân tại A

11 tháng 3 2020

B D A C

Hình hơi xấu xíu :vv

a) Xét t.giác AMB và t.giác DMC có :

MA = MD ( gt )

\(\widehat{AMB}=\widehat{DMC}\left(doi-dinh\right)\)

MB = MC (gt)

Vậy t.giác AMB = t.giác DMC (c.g.c)

b) Do : t.giác AMB =  t.giác DMC ( cmt ) 

=> AB = DC ; \(\widehat{ABC}=\widehat{DCB}\)

Xét t.giác ABC và t.giác DCB có :

BC : cạnh chung

\(\widehat{ABC}=\widehat{DCB}\left(cmt\right)\)

AB = DC ( cmt )

Vậy t.giác ABC = t.giác DCB ( c.g.c )

=> AC = BD

\(\widehat{ACB}=\widehat{DBC}\) mà hai góc này ở vị trí so le trong.

=> AC // BD

Vì : t.giác ABC = t.giác DCB ( cmt )

=> \(\widehat{BAC}=\widehat{BDC}=90^0\)

Câu 4. Cho tam giác ABC có AB = 9cm, AC = 12cm, BC = 15cm, gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. a) Chứng minh tam giác ABC vuông tại A. b) CM: \(\Delta MAB\) = \(\Delta MDC\). c) Gọi K là trung điểm của AC chứng minh KD = KB. d) KD cắt BC tịa I, KB cắt AD tại N chứng minh \(\Delta KNI\) cân. Câu 5. Cho tam giác ABC vuông ở A , có C = 300 . Gọi M là trung điểm của BC, trên tia đối...
Đọc tiếp

Câu 4. Cho tam giác ABC có AB = 9cm, AC = 12cm, BC = 15cm, gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. a) Chứng minh tam giác ABC vuông tại A. b) CM: \(\Delta MAB\) = \(\Delta MDC\). c) Gọi K là trung điểm của AC chứng minh KD = KB. d) KD cắt BC tịa I, KB cắt AD tại N chứng minh \(\Delta KNI\) cân.

Câu 5. Cho tam giác ABC vuông ở A , có C = 300 . Gọi M là trung điểm của BC, trên tia đối của tia MA lấy điểm D sao cho MD = MA. a/ Chứng minh : AB = CD. b/ Chứng minh: \(\Delta BAC=\Delta DAC\). c/ Chứng minh : \(\Delta ABM\) là tam giác đều.

Câu 6. Cho tam giác ABC vuông ở B, gọi M là trung điểm của BC . Trên tia đối của tia MA lấy điểm E sao cho ME = MA. Chứng minh: a/ \(\Delta ABM=\Delta ECM\). b/ AC > CE. c/ góc BAM>góc MAC

4
1 tháng 5 2020

(tự vẽ hình )

câu 4:

 a) có AB2 + AC= 225

BC= 225

Pytago đảo => \(\Delta ABC\)vuông tại A

b) Xét \(\Delta MAB\)và \(\Delta MDC\)

MA = MD (gt)

BM = BC ( do M là trung điểm của BC ) 

\(\widehat{AMB}=\widehat{CMD}\)( hai góc đối đỉnh )

=> \(\Delta MAB\)\(\Delta MDC\) (cgc)

c) vì \(\Delta MAB\)\(\Delta MDC\)

=> \(\hept{\begin{cases}AB=DC\\\widehat{MAB}=\widehat{MDC}\end{cases}}\)

=> AB// DC

lại có AB \(\perp\)AC => DC \(\perp\)AC => \(\Delta KCD\)vuông tại C

Xét \(\Delta\) vuông ABK và \(\Delta\)vuông KCD:

AB =CD (cmt)

AK = KC ( do k là trung điểm của AC )

=> \(\Delta\)vuông AKB = \(\Delta\)vuông CKD (cc)

=> KB = KD

d. do KB = KD => \(\Delta KBD\)cân tại K

=> \(\widehat{KBD}=\widehat{KDB}\)(1)

có \(\Delta ADC\)vuông tại C => \(AD=\sqrt{AC^2+DC^2}=15\)

=> MD = 7.5

mà MB = 7.5

=> MB = MD 

=> \(\Delta MBD\)cân tại M

=> \(\widehat{MBD}=\widehat{MDB}\)(2)

Từ (1) và (2) => \(\widehat{KBD}-\widehat{MBD}=\widehat{KDB}-\widehat{MDB}\)hay \(\widehat{KBM}=\widehat{KDM}\)

Xét \(\Delta KBI\)và \(\Delta KDN\)có:

\(\widehat{KBI}=\widehat{KDN}\)(cmt)

\(\widehat{KBD}\)chung

KD =KB (cmt) 

=> \(\Delta KBI\)\(\Delta KDN\)(gcg)

=> KN =KI 

=. đpcm

1 tháng 5 2020

câu 5: 

a) Xét \(\Delta ABM\)và \(\Delta MDC\):

MA=MD(gt)

MB=MC (M là trung điểm của BC)

\(\widehat{BMA}=\widehat{DMC}\)( đối đỉnh )

=> \(\Delta BMA=\Delta CMD\)(cgc)

b) Xét \(\Delta\)vuông ABC 

có AM là đường trung tuyến của tam giác 

=> \(AM=\frac{1}{2}BC\)mà \(BM=MC=\frac{1}{2}BC\)(do M là trung điểm của BC )

=> AM = BM = MC 

có MA =MD => AM = MD =MB =MC

=> BM +MC = AM +MD hay BC =AD

Xét \(\Delta BAC\)và \(\Delta DCA\)

AB =DC

AC chung

BC =DC

=> \(\Delta BAC\)\(\Delta DCA\)(ccc)

c. Xét \(\Delta ABM\)

BM=AM

\(\widehat{ABM}\)= 600

=> đpcm

 

a: HB=HC=6cm

\(HA=\sqrt{10^2-6^2}=8\left(cm\right)\)

b: Xét ΔABM và ΔACN có

AB=AC

\(\widehat{ABM}=\widehat{ACN}\)

BM=CN

DO đo: ΔABM=ΔACN

Xét ΔBDM vuông tại D và ΔCEN vuông tại E có

BM=CN

\(\widehat{M}=\widehat{N}\)

Do đó: ΔBDM=ΔCEN

c: Xét ΔKBC có

KH là đường cao

KH là đường trung tuyến

Do đó:ΔKBC cân tại K

=>\(\widehat{KBC}=\widehat{KCB}\)

=>\(\widehat{KCB}=\widehat{DBM}\)

=>\(\widehat{KCB}=\widehat{ECN}\)

=>\(\widehat{KCB}+\widehat{BCE}=180^0\)

=>K,E,C thẳng hàng

5 tháng 3 2017

vẽ hình đi mk lm cho

3 tháng 2 2016

Bạn vẽ hình giùm được ko?????

3 tháng 2 2016

mik nghĩ vẽ hình sẽ làm bài dễ hơn đó

29 tháng 10 2019

B A C D K H I

a ) Xét \(\Delta AHB\) vuông tại H ta có :

\(\widehat{HBA}+\widehat{HAB}=90^o\) ( hai góc phụ nhau )

\(\widehat{HAB}=90^o-\widehat{HBA}=90^o-60^o=30^o\)

Vậy \(\widehat{HAB}=60^o\)

b ) Xét \(\Delta AHI\) và \(\Delta ADI\)có :

AH = AD (gt)

IH=ID (gt)

AI cạnh chung 

\(\Rightarrow\Delta AHI=\Delta ADI\left(c.c.c\right)\)

Suy ra \(\widehat{HIA}=\widehat{DIA}\) ( hai góc tương ứng )

Mà \(\widehat{HIA}+\widehat{DIA}=180^o\) ( 2gocs kề bùy )

\(\Rightarrow\widehat{HIA}=\widehat{DIA}=90^o\)

Do đó \(AI\perp HD\left(đpcm\right)\)

c ) Vì  \(\Delta AHI=ADI\) ( cm câu b )

\(\Rightarrow\widehat{HAK}=\widehat{DAK}\) ( 2 góc tương ứng )

Xét \(\Delta AHK\) và \(\Delta ADK\) có ;

AH = AD (gt)

\(\widehat{HAK}=\widehat{DAK}\left(cmt\right)\)

AK cạn chung

\(\Rightarrow\Delta AHK=\Delta ADK\left(c.g.c\right)\)

\(\Rightarrow\widehat{AHK}=\widehat{ADK}=90^o\) ( 2 góc tương ứng )

\(\Rightarrow AD\perp AC\)

Mà \(BA\perp AC\left(\Delta ABC\perp A\right)\)

AD//AB ( đpcm)