Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tứ giác ABCD có:
. M là trung điểm của BC ( AM là đường trung tuyến)
. M là tđ của AD ( gt)
Vậy: ABCD là hbh ( tứ giác có 2 đường chéo cắt nhau tại tđ của mỗi đường)
mà \(\widehat{BAC}\) = 900 ( \(\Delta\) ABC vuông tại A)
--> ABCD là hình chữ nhật ( hbh có 1 góc vuông)
b) Ta có: \(IA\perp AC\)
\(CD\perp AC\)
\(\Rightarrow\) IA // CD
Xét tứ giác BIDC có:
. IA // CD (cmt)
\(\Rightarrow\) IB // CD ( B ϵ IA )
. AB =CD ( cạnh đối hcn ABCD )
mà AB = IB ( tính chất đối xứng)
\(\Rightarrow\) IB = CD ( cùng = AB )
Vậy: BIDC là hbh ( tứ giác có 2 cạnh đối vừa //, vừa = nhau)
\(\Rightarrow\) BC // ID ( cạnh đối hbh)
" đề câu c sai nha bạn"
a) Xét tứ giác AMIN có:
∠(MAN) = ∠(ANI) = ∠(IMA) = 90o
⇒ Tứ giác AMIN là hình chữ nhật (có 3 góc vuông).
b) ΔABC vuông có AI là trung tuyến nên AI = IC = BC/2
do đó ΔAIC cân có đường cao IN đồng thời là đường trung tuyến
⇒ NA = NC.
Mặt khác ND = NI (t/c đối xứng) nên ADCI là hình bình hành
Lại có AC ⊥ ID (gt). Do đó ADCI là hình thoi.
c) Ta có: AB2 = BC2 – AC2 (định lí Py-ta-go)
= 252 – 202 ⇒ AB = √225 = 15 (cm)
Vậy SABC = (1/2).AB.AC = (1/2).15.20 = 150 (cm2)
d) Kẻ IH // BK ta có IH là đường trung bình của ΔBKC
⇒ H là trung điểm của CK hay KH = HC (1)
Xét ΔDIH có N là trung điểm của DI, NK // IH (BK // IH)
Do đó K là trung điểm của DH hay DK = KH (2)
Từ (1) và (2) ⇒ DK = KH = HC ⇒ DK/DC= 1/3.
Bài 1: Giải: Xét tam giác ACD có F,G lần lượt là trung điểm AC,DC nên FG là đường trung bình
\(\Rightarrow\)\(FG//AD\)
C/m tương tự đc \(EH//AD; GH//EF//BC\)
\(\Rightarrow EFGH\) là hình bình hành
a/Để EFGH là hình chữ nhật thì góc \(FGH=90^o\)
\(\Rightarrow góc HGD+góc FGC=90^o\)
Mà góc HGD=góc BCD;góc FGC= góc ADC ( góc đồng vị = nhau)
\(\Rightarrow\) góc BCD+góc ADC=\(90^o\)
\(\Rightarrow\)Để EFGH là hình chữ nhật thì tứ giác ABCD cần có góc BCD+góc ADC=\(90^o\)
b/Để EFGH là hình thoi thì FG=HG
Mà FG=1/2AD; HG=1/2BC
\(\Rightarrow\)AD=BC
\(\Rightarrow\)Để EFGH là hình thoi thì tứ giác ABCD có AD=BC
c/ để EFGH là hình vuông thì EFGH phải vừa là hình chữ nhật vừa là hình thoi\(\Rightarrow \)ABCD phải có đủ cả 2 điều kiện trên
Hướng giải:
a) Hình chữ nhật : dấu hiệu tứ giác có 3 góc vuông là hình chữ nhật
b) C/m IN là đg tb của tam giác ABC => NA = NC
Tứ giác ADCI là hình thoi: dấu hiệu hai đg chéo vuông góc với nhau và cắt nhau tại trung điểm mỗi đường
c) BC cắt DC tại C chứ. (hai đoạn này chỉ có 1 điểm chung)
*CHÚ Ý: phía trên ko phải là bài giải. Chỉ lả gợi ý giải.
a) Ta có :
P là trung điểm AB
Q là trung điểm AC
⇒⇒ PQ là đường trung bình tam giác ABC
Xét tứ giác BPQC , ta có :
PQ//BC( do PQ là đường trung bình tam giác ABC)
⇒⇒BPQC là hình thang (dấu hiệu nhận biết hình thang)
b)Ta có :
Q là trung điểm PE
Q là trung điểm AC
⇒⇒ Q là trung điểm hai đường chéo của tứ giác AECP
Suy ra tứ giác AECP là hình bình hành
a) Ta có :
P là trung điểm AB
Q là trung điểm AC
⇒ PQ là đường trung bình tam giác ABC
Xét tứ giác BPQC , ta có :
PQ//BC( do PQ là đường trung bình tam giác ABC)
⇒BPQC là hình thang (dấu hiệu nhận biết hình thang)
a, là hcn
câu b
từ câu a => hf // và = ae
mà hf = fm
=> fm // và = ae
=> đpcm
câu c
tam giác bnh có be vừa là dcao vừa trung tuyến
=> tam giác bnh cân b
=> bn=bh (1)
cmtt => ch=cm (2)
mà bc= bh+ch
=> bc^2 = (bh+ch+)^2
= bh^2 + 2 bh.ch +ch^2 (3)
(1) (2) (3) => ... (đpcm)
lười làm đầy đủ nên vắn ắt z thôi, thông cảm nhé ^_^
Bài 2.
-Hình bn tự vẽ nhé!
Bài làm:
a, Có F là trung điểm của AC (gt)
\(\Rightarrow\)AF=\(\dfrac{1}{2}\)AC (1)
Xét tam giác ABC ta có:
E là trung điểm của AB (gt)
G là trung điểm của BC (gt)
\(\Rightarrow\)EG là đường trung bình của tam giác ABC
\(\Rightarrow\)EG=\(\dfrac{1}{2}\)AC và EG song song với AC hay EG song song với AF (2)
Từ (1) và (2)\(\Rightarrow\)AEGF là hình bình hành.
mà góc A= 90 độ (gt)\(\Rightarrow\)AEGF là hình chữ nhật.
AEGF là hcn nên có AE song song với GF ( Tính chất hcn) hay EB song song với IF (3)
mà EI song song với BF (gt) (4)
Từ (3) và (4)\(\Rightarrow\)BFIE là hình bình hành.
b, Theo a, ta có: BFIE là hình bình hành nên BE=FI (tính chất hình bình hành) và AEGF là hình chữ nhật nên AE=GF (tính chất hình chữ nhật)
mà AE=EB (E là trung điểm của AB)
\(\Rightarrow\)GF=FI.
Xét tứ giác AGCI có: FA=FC (F là trung điểm của AC), GF=FI (cmt)
\(\Rightarrow\)AGCI là hình bình hành.
mà GI vuông góc với AC nên hình bình hành AGCI là hình thoi
c, Theo b, ta có: AGCI là hình thoi
Để tứ giác (hình thoi) AGCI là hình vuông thì góc AGC= 90 độ hay AG vuông góc với BC.
Khi đó AG là đường cao của tam giác ABC
Mặt khác AC là đường trung tuyến của tam giác ABC ( G lf trung điểm của BC)\(\Rightarrow\) Tam giác ABC cân tại A
mà tam giác ABC vuông tại (gt) nên tam giác ABC vuông cân tại A thì AGCI là hình vuông.
Ta có: ∠(BAD) +∠(BAC) +∠(CAE) =180o(kề bù)
Mà ∠(BAC) =90o (gt) ⇒∠(BAD) +∠(CAE) =90o (1)
Trong ΔAEC, ta có: ∠(AEC) =90o ⇒∠(CAE) +∠(ACE) =90o (2)
Từ (1) và (2) suy ra: ∠(BAD) =∠(ACE)
Xét hai tam giác vuông AEC và BDA, ta có:
∠(AEC) = ∠(ADB) = 90o
AC = AB (gt)
∠(ACE) = ∠(BAD) (chứng minh trên)
Suy ra: ΔAEC= ΔBDA (cạnh huyền- góc nhọn)
Pause
Unmute
Loaded: 75.23%
Remaining Time -0:46
Close Player
Bình luận hoặc Báo cáo
về câu hỏi!
CÂU HỎI HOT CÙNG CHỦ ĐỀ
CÂU 1:
Cho tam giác ABC vuông tại A. Tia phân giác của góc B cắt AC ở D. Kẻ DE vuông góc vớ BC. Chứng minh rằng AB = BE
XEM ĐÁP ÁN » 18/04/2020 4,121
CÂU 2:
Cho tam giác ABC trên tia đối của tia AB lấy điểm D sao cho AD=AB.Trên tia đối của tia AC lấy điểm E sao cho AE=AC. Một đường thẳng đi qua A cắt DE và BC theo thứ tự tại M và N. Chứng minh rằng: BC // DE
XEM ĐÁP ÁN » 18/04/2020 3,323
CÂU 3:
Cho tam giác ABC trên tia đối của tia AB lấy điểm D sao cho AD=AB.Trên tia đối của tia AC lấy điểm E sao cho AE=AC. Một đường thẳng đi qua A cắt DE và BC theo thứ tự tại M và N. Chứng minh rằng: AM = AN
XEM ĐÁP ÁN » 18/04/2020 2,562
CÂU 4:
Cho tam giác giác ABC vuông tại A có AB = AC. Lấy điểm D thuộc cạnh AB, điểm E thuộc cạnh AC sao cho AD = AE. Đường thẳng đi qua D và vuông góc với BE cắt đường thẳng CA tại K. Chứng minh rằng AK = AC.
XEM ĐÁP ÁN » 18/04/2020 1,400
CÂU 5:
Cho tam giác ABC. Trên cạnh AB lấy các điểm D và E sao cho AD = BE. Qua D và E, vẽ các đường thẳng song song với BC, chúng cắt AC theo thứ tự ở M và N. Chứng minh rằng DM + EN = NC
Hướng dẫn: qua N kẻ đường thẳng song song với AB
XEM ĐÁP ÁN » 18/04/2020 1,348
XEM THÊM CÁC CÂU HỎI KHÁC »
BÌNH LUẬN
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận
Bình luận
Đề thi liên quan
Sách bài tập Toán 7 Tập 1
42 đề 16324 lượt thiThi thử
Sách bài tập Toán 7 Tập 2
29 đề 10569 lượt thiThi thử
Giải bài tập Toán 7-Tập 1-Phần Đại số-Chương 1: Số hữu tỉ. Số thực
18 đề 8379 lượt thiThi thử
Giải toán 7 Tập 2 Chương 3: Quan hệ giữa các yếu tố trong tam giác. Các đường đồng quy của tam giác
21 đề 8029 lượt thiThi thử
Giải toán 7 Chương 2: Tam giác
21 đề 7178 lượt thiThi thử
Chương 4: Biểu thức đại số
12 đề 5115 lượt thiThi thử
Phần Hình học - Chương 1: Đường thẳng vuông góc. Đường thẳng song song
13 đề 4889 lượt thiThi thử
Bài tập tuần Toán 7 Học kì 2 có đáp án
18 đề 4485 lượt thiThi thử
Giải toán 7 Chương 2: Hàm số và đồ thị
14 đề 3861 lượt thiThi thử
Giải Toán 7 Tập 2 Chương 3: Thống kê
6 đề 3314 lượt thiThi thử
XEM THÊM »
HỎI BÀI
Câu hỏi mới nhất
Điền từ thích hợp vào chỗ trống
Cho góc xOy. Tia Oz là tia phân giác của góc ˆxOyxOy^. Gọi Ot là tia đối của tia Ox, Oh là tia đối của tia Oz. Cho biết ˆxOy+ˆtOh=210°xOy^+tOh^=210°. Số đo góc ˆxOyxOy^ là…? Số đo góc ˆtOhtOh^ là..?
546 24/06/2021Xem đáp án
Lựa chọn đáp án đúng nhất
Cho hình vẽ, biết xx' // yy' và tỉ số đo của ˆxABxAB^ và ˆAByABy^ là 2:3. Khi đó tổng số đo của hai góc ˆzAx'zAx'^ và ˆzBy'zBy'^ là:
316 24/06/2021Xem đáp án
Lựa chọn đúng hay sai
Cho ˆxOy=70°xOy^=70°. Trên Ox lấy điểm A. Kẻ tia Az sao cho ˆxAz=70°xAz^=70°. Trên tia Az lấy điểm B. Kẻ tia Bt cắt Oy tại C sao cho ˆCBz=110°CBz^=110°. Kẻ AH⊥OyAH⊥Oy và CK⊥AzCK⊥Az.
1. Az//OyAz//Oy
2. Ox//BtOx//Bt
3. ˆBCO=70°BCO^=70°
4. AH//CKAH//CK
260 24/06/2021Xem đáp án
Điền từ thích hợp vào chỗ trống
Cho hai góc có đỉnh A và B và các cạnh tương ứng song song. Tìm số đo mỗi góc, biết 4ˆA=5ˆB4A^=5B^. Đáp án: ˆA..?ˆB...?A^..?B^...?
221 24/06/2021Xem đáp án
Điền từ thích hợp vào chỗ trống
Cho hình vẽ. Tia At⊥ABAt⊥AB
Tính số đo ˆBAy−ˆtCx'=...?BAy^−tCx'^=...?
193 24/06/2021Xem đáp án
Điền từ thích hợp vào chỗ trống.
Cho các đường thẳng MN, PQ, CD sao cho MN//PQ và CD cắt MN, PQ tại A và B. Biết ˆABP=47°ABP^=47°. Từ A kẻ AH⊥PQAH⊥PQ. Số đo góc ˆHABHAB^ là…?
143 24/06/2021Xem đáp án
Điền từ thích hợp vào chỗ trống:
Cho hình vẽ:
Số đo góc x là…?
Ta có a⊥c,b⊥ca⊥c,b⊥c nên a//b
197 24/06/2021Xem đáp án
Sắp xếp các câu
Trên hình 17, cho biết Ax//Cy. Hãy sắp xếp các ý chứng minh ˆA+ˆB+ˆC=360°A^+B^+C^=360°
1. Kẻ tia Bz//AxBz//Ax thì Bz//CyBz//Cy
2. Vậy ˆA+ˆABz+ˆzBC+ˆC=360°A^+ABz^+zBC^+C^=360°
3. Hay ˆA+ˆB+ˆC=360°A^+B^+C^=360°
4. Và ˆC+ˆzBC=180°C^+zBC^=180°
5. Do đó ˆA+ˆABz=180°A^+ABz^=180°
179 24/06/2021Xem đáp án
Lựa chọn đáp án đúng nhất.
Cho tam giác ABC. Vẽ AH⊥BC(H∈BC)AH⊥BCH∈BC. Cho biết ˆACB=30°ACB^=30°. Vẽ tia Ax⊥AHAx⊥AH. Phát biểu nào sau đây đúng?
158 24/06/2021Xem đáp án
Lựa chọn đáp án đúng nhất
Cho hai đường thẳng a, b song song. Điểm A∈a,B∈b,C∈bA∈a,B∈b,C∈b. Biết ˆBAa=40°,ˆACB=30°BAa^=40°,ACB^=30° như hình vẽ. câu nào sau đây đúng?
305 24/06/2021Xem đáp án
XEM THÊM »
Gọi 084 283 45 85
Hỗ trợ đăng ký khóa học tại Vietjack
LIÊN KẾT
THÔNG TIN VIETJACK
TẢI ỨNG DỤNG
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
Giấy chứng nhận ĐKKD số: 0108307822 do Sở KH & ĐT TP Hà Nội cấp lần đầu ngày 04/06/2018
© 2017 Vietjack4. All Rights Reserved.
Ta có: ∠(BAD) +∠(BAC) +∠(CAE) =180o(kề bù)
Mà ∠(BAC) =90o (gt) ⇒∠(BAD) +∠(CAE) =90o (1)
Trong ΔAEC, ta có: ∠(AEC) =90o ⇒∠(CAE) +∠(ACE) =90o (2)
Từ (1) và (2) suy ra: ∠(BAD) =∠(ACE)
Xét hai tam giác vuông AEC và BDA, ta có:
∠(AEC) = ∠(ADB) = 90o
AC = AB (gt)
∠(ACE) = ∠(BAD) (chứng minh trên)
Suy ra: ΔAEC= ΔBDA (cạnh huyền- góc nhọn)
Ta có: ∠(BAD) +∠(BAC) +∠(CAE) =180o(kề bù)
Mà ∠(BAC) =90o (gt) ⇒∠(BAD) +∠(CAE) =90o (1)
Trong ΔAEC, ta có: ∠(AEC) =90o ⇒∠(CAE) +∠(ACE) =90o (2)
Từ (1) và (2) suy ra: ∠(BAD) =∠(ACE)
Xét hai tam giác vuông AEC và BDA, ta có:
∠(AEC) = ∠(ADB) = 90o
AC = AB (gt)
∠(ACE) = ∠(BAD) (chứng minh trên)
Suy ra: ΔAEC= ΔBDA (cạnh huyền- góc nhọn)