K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 giờ trước (18:52)

a: Xét tứ giác AMHN có \(\hat{AMH}=\hat{ANH}=\hat{MAN}=90^0\)

nên AMHN là hình chữ nhật

b: AMHN là hình chữ nhật

=>HM//AN và HM=AN

HM//AN

=>HM//ND

HM=AN

AN=ND

Do đó: HM=ND

Xét tứ giác HMND có

HM//ND

HM=ND

Do đó: HMND là hình bình hành

c: ΔABC vuông tại A

mà AO là đường trung tuyến

nên AO=OB=OC

OA=OC

=>ΔOAC cân tại O

=>\(\hat{OAC}=\hat{OCA}=\hat{ACB}\)

AMHN là hình chữ nhật

=>\(\hat{ANM}=\hat{AHM}\)

\(\hat{AHM}=\hat{ABC}\left(=90^0-\hat{HAB}\right)\)

nên \(\hat{ANM}=\hat{ABC}\)

\(\hat{ANM}+\hat{OAC}=\hat{ABC}+\hat{ACB}=90^0\)

=>AO⊥MN

mà MN//HD(MHDN là hình bình hành)

nên AO⊥HD tại E

=>ΔEAH vuông tại E

Gọi I là giao điểm của AH và MN

AMHN là hình chữ nhật

=>AH=MN

AMHN là hình chữ nhật

=>AH cắt MN tại trung điểm của mỗi đường

=>I là trung điểm chung của AH và MN

Ta có: \(IA=IH=\frac{AH}{2}\)

\(IM=IN=\frac{MN}{2}\)

mà AH=MN

nên \(IA=IH=IM=IN=\frac{AH}{2}=\frac{MN}{2}\)

ΔAEH vuông tại E

mà EI là đường trung tuyến

nên \(EI=\frac{AH}{2}=\frac{MN}{2}\)

Xét ΔEMN có

EI là đường trung tuyến

\(EI=\frac{MN}{2}\)

Do đó: ΔEMN vuông tại E

=>EM⊥NE

3 tháng 12 2018

1a/IM vuông góc AB=>AMI=90 do

IN vuông góc AC=>ANI=90 do

△ABC vuông tại A=>BAC=90 do

=>góc AMI= gocANI= gocBAC= 90 do => tứ giác AMIN là hình chữ nhật

1b/Có I dx vs D qua N => ID là đường trung trực của AC=>AI=AD; IC=ID(1)

Trong △ABC có AI là đường trung tuyến ứng với cạnh huyền BC =>AI=1/2BC hay AI=IC(2)

Từ (1) va (2) => AI=IC=CD=DA => Tu giac AICD la hthoi

3 tháng 12 2018

2a/ Có M là TĐ AB và M là điểm đối xứng giữa E và H

=> AM=MB VA EM=MH hay AB giao voi EH tai TD M

=> Tg AEBH la hbh co AHB=90 do => Hbh AEBH la hcn

2b/Co AEBH la hcn=>EH=AB

+) Mà AB=AC=>EH=AC(1)

+) △ABC cân tại A có AH là đường cao đồng thời phân giác của góc BAC => góc BAH=góc HAC.

Co goc BAH=1/2 EAH ; góc AHE=1/2AHB

Ma goc EAH= goc AHB=>BAH=AHE hay goc HAC= goc AHE.

Mà 2 góc này ở vị trí SLT=> EH//AC(2)

Từ (1) va (2)=>tg AEHC la hbh

16 tháng 8 2020

a) tứ giác AMHN có \(\widehat{A}=\widehat{M}=\widehat{N}=90^0\) => tứ giác AMHN là hình chữ nhật

b) vì O đối dứng H qua M => OM=MH

        E đối xứng H qua N => HN=NE

xét tam giác HDE có \(\hept{\begin{cases}OH=MH\\HN=NE\end{cases}\Rightarrow}\)MN là đường trung bình tam giác HDE

=> MN//DE lại có MA // NE => MAEN là hình bình hành

c) có MAEN là hình bình hành => MN=AE

MN là đường trung bình tam giác HDE => \(MN=\frac{1}{2}DE\)

=> \(AE=\frac{1}{2}DE\)=> A là trung điểm DE

16 tháng 12 2016

A B C M D E H K

11 tháng 2 2017

mk ko biết

1 tháng 1 2017

Hướng giải: 

a) Hình chữ nhật : dấu hiệu tứ giác có 3 góc vuông là hình chữ nhật

b) C/m IN là đg tb của tam giác ABC => NA = NC 

Tứ giác ADCI là hình thoi: dấu hiệu hai đg chéo vuông góc với nhau và cắt nhau tại trung điểm mỗi đường

c) BC cắt DC tại C chứ. (hai đoạn này chỉ có 1 điểm chung)

*CHÚ Ý: phía trên ko phải là bài giải. Chỉ lả gợi ý giải. 

1 tháng 1 2017

Bài 2: 

a) HE//MN ( _|_ KM) và M^ = 90o => hình thang vuông

b) Tương tự câu b bài 1

c) Thắc mắc về đề bài. Tương tự câu c bài 1