\(...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2018

A B C 8 6 cm cm

Xét ΔABC có AD là phân giác của góc A

=>\(\dfrac{DC}{AC}=\dfrac{BD}{BA}\Rightarrow\dfrac{BD}{DC}=\dfrac{AB}{AC}=\dfrac{8}{6}=\dfrac{4}{3}\)

b) Xét ΔABC có góc A=90o theo đl py-ta-go ta đc

BC=10cm

28 tháng 3 2019

a) Trong ΔABC có AD là phân giác ∠A

Áp dụng tính chất đường phân giác vào ΔABC, ta có:

\(\frac{AB}{AC}=\frac{DB}{DC}\)

hay \(\frac{8}{6}=\frac{4}{3}=\frac{DB}{DC}\)

b) Áp dụng định lí Py-ta-go vào ΔvuôngABC, ta có:

BD2 = AB2 + AC2

hay BD2 = 82 + 62 = 64 + 36 = 100

=> BD = 10(cm)

Áp dụng tính chất đường phân giác vào ΔABC, ta có:

\(\frac{AC}{AB}=\frac{DC}{DB}\)

=> \(\frac{AC}{AB+AC}=\frac{DC}{DC+DB}\)

hay \(\frac{6}{14}=\frac{DC}{10}\)

=> DC = \(\frac{10.6}{14}=4,28\)(cm)

DB = BC - DC = 10 - 4,28 = 5,72(cm)

28 tháng 3 2018

a)  \(\Delta ABC\) có   \(AD\) là phân giác  \(\widehat{BAC}\) theo tính chất đường phân giác của tam giác ta có:

         \(\frac{BD}{AB}=\frac{DC}{AC}\) \(\Rightarrow\)\(\frac{DB}{DC}=\frac{AB}{AC}\)

hay      \(\frac{DB}{DC}=\frac{8}{6}=\frac{4}{3}\)

b)  Áp dụng định lý Pytago vào tam giác vuông  ABC  ta có:

         \(BC^2=AB^2+AC^2\)

\(\Leftrightarrow\)\(BC^2=6^2+8^2=100\)

\(\Leftrightarrow\)\(BC=\sqrt{100}=10\) cm

mà   \(\frac{DB}{DC}=\frac{4}{3}\)\(\Rightarrow\) \(\frac{DB}{4}=\frac{DC}{3}=\frac{DB+DC}{4+3}=\frac{BC}{7}=\frac{10}{7}\)

suy ra:   \(DB=\frac{10}{7}.4\approx5,71\)

             \(DC=\frac{10}{7}.3\approx4,29\)

            

3 tháng 8 2021

Cau c d dau b

9 tháng 3 2022

tính BD và DC hả

9 tháng 3 2022

Theo định lí Pytago tam giác ABC vuông tại A

\(BC=\sqrt{AB^2+AC^2}=10cm\)

Vì AD là pg \(\dfrac{AB}{AC}=\dfrac{BD}{DC}\Leftrightarrow\dfrac{DC}{AC}=\dfrac{BD}{AB}\)

Theo tc dãy tỉ số bằng nhau ta có 

\(\dfrac{DC}{AC}=\dfrac{BD}{AB}=\dfrac{BC}{AC+AB}=\dfrac{10}{14}=\dfrac{5}{7}\Rightarrow DC=\dfrac{30}{7}cm;BD=\dfrac{40}{7}cm\)

23 tháng 5 2018

1 2 B D H C A (Bonus thêm cho cái hình :>>)

a) Ta có: AD là tia phân giác của góc BAC

\(\Rightarrow\frac{AB}{AC}=\frac{DB}{DC}\)

\(\Leftrightarrow\frac{DB}{DC}=\frac{8}{6}\)

\(\Rightarrow\frac{DB}{DC}=\frac{4}{3}\)

b) Ta có: \(\widehat{B_1}+\widehat{C_1}=90^o\left(\Delta ABC\text{ vuông}\right)\)

              \(\widehat{C_1}+\widehat{HAC}=90^o\left(\Delta AHC\text{ vuông}\right)\)

         \(\Rightarrow\widehat{B_1}=\widehat{HAC}\left(=\widehat{C_1}\right)\)

Xét \(\Delta AHB\text{ và }\Delta CHA\)

Có: \(\widehat{AHC}=\widehat{AHB}\left(=90^o\right)\)

      \(\widehat{B_1}=\widehat{HAC}\)

\(\Rightarrow\Delta AHB~\Delta CHA\)

23 tháng 5 2018

c) Xét tam giác ABC vuông tại A
<=> BC^2= AB^2+AC^2(áp dụng định lí Py-ta-go)
<=> BC^2= 100
<=> BC= 10   (cm)
Xét tam giác AHB ~ tam giác CHA (chứng minh trên)
<=> AH/CA= AB/CB
<=> AH= AB.CA /CB
<=> AH = 8.6 : 10 =  4,8 (cm)
Xét tam giác AHB vuông tại H
=> BH^2= AB^2-AH^2= 8^2-4,8^2=40,96
=> BH= 6,4 cm
Xét tam giác CHA vuông tại H
​=> CH^2=AC^2-AH^2=6^2-4,8^2=12,96
=> CH = 3,6 cm
Ta có:
S.AHB / S.CHA = (1/2 . BH.HA )/ (1/2 . HC .AH)
= BH / HC = 6,4 / 3,6 =16/9