![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xét ΔABC có BC^2=AB^2+AC^2
nên ΔABC vuông tại A
Xét ΔABD vuông tại D và ΔCAD vuông tại D có
góc DBA=góc DAC
=>ΔABD đồng dạng với ΔCAD
b: góc EAF+góc EDF=180 độ
=>AFDE nội tiếp
=>góc AFD+góc AED=180 độ
=>góc AFD=góc CED
![](https://rs.olm.vn/images/avt/0.png?1311)
Xét ΔAHB vuông tại H có HM là đường cao
nên \(AM\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HN là đường cao
nên \(AN\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)
hay AM/AC=AN/AB
Xét ΔAMN vuông tại A và ΔACB vuông tại A có
AM/AC=AN/AB
Do đó: ΔAMN\(\sim\)ΔACB
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H co
góc B chung
=>ΔABC đồng dạng với ΔHBA
b: ΔABC đồng dạng với ΔHBA
=>BA/BH=BC/BA
=>BA^2=BH*BC
c: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
AH=6*8/10=4,8cm
d: BM/CM=AB/AC=3/4
=>4BM=3CM
mà BM+CM=10
=>CM=40/7cm;BM=30/7cm
![](https://rs.olm.vn/images/avt/0.png?1311)
a) -Xét △AIC và △DIB có:
\(\widehat{IAC}=\widehat{IDB}=90^0\)
\(\widehat{AIC}=\widehat{DIB}\) (đối đỉnh)
\(\Rightarrow\)△AIC∼△DIB (g-g).
\(\Rightarrow\dfrac{AI}{DI}=\dfrac{CI}{BI}\) nên \(\dfrac{AI}{CI}=\dfrac{DI}{BI}\)
b) -Xét △AID và △CIB có:
\(\widehat{AID}=\widehat{CIB}\) (đối đỉnh)
\(\dfrac{AI}{CI}=\dfrac{DI}{BI}\)(cmt)
\(\Rightarrow\)△AID∼△CIB (c-g-c) nên \(\widehat{ABC}=\widehat{ADC}\)
c) -Có: \(\widehat{IAD}=\widehat{ICB}\) (△AID∼△CIB)
\(\widehat{ICA}=\widehat{IBD}\)(△AIC∼△DIB)
Mà \(\widehat{ICB}=\widehat{ICA}\) (CI là tia phân giác của \(\widehat{ACB}\))
\(\Rightarrow\widehat{IAD}=\widehat{IBD}\)
\(\Rightarrow\)△ADB cân tại D nên \(DA=DB\)
Cho tam giác ABC vuông tại A
thì a sẽ cân cả thế giới vì e