Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình trả lời trước câu b:
Bạn c/m tam giác AHM = tam giác DHM (ccc) => HM là p/g góc AHD => góc AHM =1/2.(góc AHD) = 90/2 =45
Câu hỏi của Phạm An Nguyên - Toán lớp 8 - Học toán với OnlineMath
Ta có ∆AHD có AH = HD và AHD = 90 nên ∆AHD vuông cân tại H
=> HAD = HDA = 45
=> ADE = 90 - HDA = 45
Tứ giác ABDE nội tiếp đường tròn vì có ABE + BDE = 180
=> ABE = ADE = 45 (1)
Mà ∆ABE lại có ABE = 90 (2)
Từ (1) và (2) => ∆ABE vuông cân tại A
=> AB = AE
a/ Ta có AE // AH( vì cùng vuông góc BC)
=> HD/HC = AE/AC
=> AC.HD = AE.HC (1)
Ta lại có AB = AE (2)
AH = HD (3)
Từ (1), (2), (3) => AB.HC = AC.AH
ý 1 câu a )
có ED vuông góc BC ; AH vuông góc BC => ED//AH => tam giác CDE đồng dạng vs tam giác CHA ( talet) (1)
xét tam giác CHA và tam giác CAB có CHA=CAB=90 độ ; C chung => tam giác CHA đồng dạng vs tam giác CAB ( gg) (2)
từ (1) và (2) =>tam giác CDE đồng dạng tam giác CAB ( cùng đồng dạng tam giác CHA )
có tam giác CDE đồng dạng tam giác CAB (cmt) => \(\frac{CE}{CB}=\frac{CD}{CA}\)
xét tam giác BAC và tam giác ADC có góc C chung và \(\frac{CE}{BC}=\frac{CD}{AC}\left(CMT\right)\) => tam giác BAC đồng dạng vs tam giác ADC ( trường hợp c-g-c) , mấy câu kia quên mịa nó r -.-
Câu hỏi của Phạm An Nguyên - Toán lớp 8 - Học toán với OnlineMath
Câu hỏi của Phạm An Nguyên - Toán lớp 8 - Học toán với OnlineMath
1 phần thôi nhé
Nối BE, Gọi P là giao điểm của AD với BE.
Áp dụng định lí Ceva cho tam giác ABE => AH/HE=BP/PE=> HP//AB(1).
Từ (1)=> Tam giác AHP cân tại H=> AH=HP.(2)
Ta cần chứng minh AD//CE <=> DP//CE <=> BD/BC=BP/BE <=> BD/BC=1-(EP/BE).(3)
Mà EP/BE=HP/AB (do (1))=> EP/BE= AH/AB=HD/DB (do (2) và tc phân giác). (4)
Khi đó (3)<=> BD/BC=1-(HD/DB) hay (BD/BC)+(HD/DB)=1 <=> BD^2+HD*BC=BC*DB
<=> BD^2+HD*BC= (BD+DC)*BD <=> BD^2+HD*BC= BD^2+BD*DC <=> HD*BC=BD*DC
<=> HD/DB=CD/BC <=> AH/AB=CD/BC. (5)
Chú ý: Ta cm được: CA=CD (biến đổi góc).
Nên (5) <=> AH/AB=CA/BC <=> Tg AHB đồng dạng Tg CAB.( luôn đúng)
=> DpCm.