Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bạn tự vẽ hình.
a, Sử dụng định lí pitago tính được \(BC=5cm\)
b, Dễ dàng chứng minh \(\Delta ABK=\Delta IBK\left(c.g.c\right)\)
=> \(\widehat{BIK}=\widehat{BAK}=90^o\)
=> \(KI\perp BC\)
c, Ta có: \(\hept{\begin{cases}AH\perp BC\\KI\perp BC\end{cases}}\)
=> AH // KI
=> \(\widehat{HAI}=\widehat{KIA}\) (1)
Mà AK = KI (do \(\Delta ABK=\Delta IBK\))
=> \(\Delta AKI\) cân tại K
=> \(\widehat{KAI}=\widehat{KIA}\) (2)
Từ (1) và (2) => \(\widehat{HAI}=\widehat{KAI}\)
=> AI là tia phân giác \(\widehat{HAC}\)
d, \(\Delta AEK\) có AI là phân giác => \(\Delta AEK\) cân tại A

Bài làm
a) Xét tam ABC vuông tại A có:
\(\widehat{ACB}+\widehat{ABC}=90^0\)( hai góc phụ nhau )
hay \(\widehat{ACB}+60^0=90^0\)
=> \(\widehat{ACB}=90^0-60^0=30^0\)
b) Xét tam giác ABE và tam giác DBE có:
\(\widehat{BAE}=\widehat{BDE}=90^0\)
Cạnh huyền: BE chung
Cạnh góc vuông: AB = BD ( gt )
=> Tam giác ABE = tam giác DBE ( cạnh huyền - cạnh góc vuông )
=> \(\widehat{ABE}=\widehat{DBE}\)( hai góc tương ứng )
=> BI là tia phân giác của góc BAC
Mà I thược BE
=> BE là tia phân giác của góc BAC
Gọi I là giao điểm BE và AD
Xét tam giác AIB và tam giác DIB có:
AB = BD ( gt )
\(\widehat{ABE}=\widehat{DBE}\)( cmt )
BI chung
=> Tam giác AIB = tam giác DIB ( c.g.c )
=> AI = ID (1)
=> \(\widehat{BIA}=\widehat{BID}\)
Ta có: \(\widehat{BIA}+\widehat{BID}=180^0\)( hai góc kề bù )
Hay \(\widehat{BIA}=\widehat{BID}=\frac{180^0}{2}=90^0\)
=> BI vuông góc với AD tại I (2)
Từ (1) và (2) => BI là đường trung trực của đoạn AD
Mà I thược BE
=> BE là đường trung trực của đoạn AD ( đpcm )
c) Vì tam giác ABE = tam giác DBE ( cmt )
=> AE = ED ( hai cạnh tương ứng )
Xét tam giác AEF và tam giác DEC có:
\(\widehat{EAF}=\widehat{EDC}=90^0\)
AE = ED ( cmt )
\(\widehat{AEF}=\widehat{DEF}\)( hai góc đối )
=> Tam giác AEF = tam giác DEC ( g.c.g )
=> AF = DC
Ta có: AF + AB = BF
DC + BD = BC
Mà AF = DC ( cmt )
AB = BD ( gt )
=> BF = BC
=> Tam giác BFC cân tại B
=> \(\widehat{BFC}=\widehat{BCF}=\frac{180^0-\widehat{FBC}}{2}\) (3)
Vì tam giác BAD cân tại B ( cmt )
=> \(\widehat{BAD}=\widehat{BDA}=\frac{180^0-\widehat{FBC}}{2}\) (4)
Từ (3) và (4) => \(\widehat{BAD}=\widehat{BFC}\)
Mà Hai góc này ở vị trí đồng vị
=> AD // FC
d) Xét tam giác ABC vuông tại A có:
\(\widehat{ACB}+\widehat{ABC}=90^0\)( hai góc phụ nhau ) (5)
Xét tam giác DEC vuông tại D có:
\(\widehat{DEC}+\widehat{ACB}=90^0\)( hai góc phụ nhau ) (6)
Từ (5) và (6) => \(\widehat{ABC}=\widehat{DEC}\)
Ta lại có:
\(\widehat{ABC}>\widehat{EBC}\)
=> AC > EC
Mà \(\widehat{EBC}=\frac{1}{2}\widehat{ABC}\)
=> EC = 1/2 AC.
=> E là trung điểm AC
Mà EC = EF ( do tam giác AEF = tam giác EDC )
=> EF = 1/2AC
=> AE = EC = EF
Và AE = ED ( cmt )
=> ED = EC
Mà EC = 1/2AC ( cmt )
=> ED = 1/2AC
=> 2ED = AC ( đpcm )
Mình chứng minh ra kiểu này cơ. không biết đề đúng hay sai!??

a: Xét ΔAHB vuông tại H và ΔAHE vuông tại H có
AH chung
HB=HE
Do đó: ΔAHB=ΔAHE
=>AB=AE
Xét ΔBAE có AB=AE và \(\hat{ABE}=60^0\)
nên ΔABE đều
b: Ta có: \(\hat{BAE}+\hat{CAE}=\hat{BAC}=90^0\)
\(\hat{HAE}+\hat{BEA}=90^0\) (ΔHEA vuông tại H)
mà \(\hat{BAE}=\hat{BEA}\) (ΔBAE đều)
nên \(\hat{CAE}=\hat{HAE}\)
=>AE là phân giác của góc HAC
Xét ΔAHE vuông tại H và ΔAKE vuông tại K có
AE chung
\(\hat{HAE}=\hat{KAE}\)
Do đó: ΔAHE=ΔAKE
=>AH=AK và EH=EK
AH=AK nên A nằm trên đường trung trực của HK(1)
EH=EK nên E nằm trên đường trung trực của HK(2)
Từ (1),(2) suy ra AE là đường trung trực của HK
c: ΔABE đều
=>\(\hat{BAE}=\hat{BEA}=\hat{ABE}=60^0\)
Ta có: \(\hat{EAB}+\hat{EAC}=\hat{BAC}\) (tia AE nằm giữa hai tia AB và AC)
=>\(\hat{EAC}=90^0-60^0=30^0\)
Ta có: ΔABC vuông tại A
=>\(\hat{ABC}+\hat{ACB}=90^0\)
=>\(\hat{ACB}=90^0-60^0=30^0\)
Xét ΔEAC có \(\hat{EAC}=\hat{ECA}\)
nên ΔEAC cân tại E
=>EA=EC
mà EA=EB
nên EC=EB
=>E là trung điểm của BC
ΔEAC cân ại E
mà EK là đường cao
nên K là trung điểm cuả AC
Xét ΔABC có
AE,BK là các đường cao
AE cắ BK tại I
Do đó: I là trọng tâm của ΔABC
=>CI đi qua trung điểm của AB
Cho
- Tam giác \(A B C\) vuông tại \(A\)
- Góc \(B = 60^{\circ}\)
- \(A H\) là đường cao
- Trên tia \(H C\) lấy điểm \(E\) sao cho \(H E = H B\)
a) Chứng minh tam giác \(A B E\) là tam giác đều
Bước 1: Phân tích đề bài
- \(A H\) là đường cao từ \(A\) xuống \(B C\), nên \(H \in B C\) và \(A H \bot B C\)
- \(H E = H B\) (tức \(E\) nằm trên tia \(H C\), cách \(H\) một đoạn bằng \(H B\))
Bước 2: Tính các góc
- Tam giác \(A B C\) vuông tại \(A\), có góc \(B = 60^{\circ}\), nên:
\(\angle C = 30^{\circ}\)
- Vì \(A H \bot B C\), \(H\) là chân đường cao.
Bước 3: Tính cạnh \(A B\) và \(A C\)
Đặt \(A B = c\), \(A C = b\), \(B C = a\).
Với góc \(B = 60^{\circ}\), và \(\angle A = 90^{\circ}\), ta có:
- \(sin 60^{\circ} = \frac{a}{c}\) (chưa cần thiết)
Bước 4: Chứng minh tam giác \(A B E\) đều
- Ta biết \(H E = H B\) và \(H\) là chân đường cao từ \(A\).
- Vì \(H E = H B\), điểm \(E\) là ảnh của \(B\) qua \(H\) trên tia \(H C\).
- Do đó, đoạn \(B E = 2 H B\).
Bước 5: Chứng minh \(A B = B E = A E\)
- \(A B\) là cạnh tam giác
- \(A E\) là đoạn từ \(A\) đến \(E\), ta cần chứng minh bằng nhau.
Phương pháp chính:
- Ta chứng minh rằng \(\triangle A B E\) có ba cạnh bằng nhau, tức là tam giác đều.
Cách khác (ngắn gọn):
- \(H\) là chân đường cao, nên \(A H \bot B C\).
- Vì \(H E = H B\), \(E\) là điểm đối xứng của \(B\) qua \(H\).
- Từ đó, \(A E = A B\) (vì \(A\) cách đều \(B\) và \(E\)).
- Do đó, \(A B = A E\).
- \(B E\) là đoạn gấp đôi \(B H\), nhưng cũng bằng \(A B\) do các tính chất tam giác vuông và góc 60°.
=> \(\triangle A B E\) có 3 cạnh bằng nhau ⇒ tam giác đều.
b) Chứng minh tam giác \(A H E = A K E\) và \(A E\) là đường trung trực của đoạn \(H K\)
- \(K\) là hình chiếu của \(E\) trên \(A C\), tức \(K \in A C\), \(E K \bot A C\).
- \(A H \bot B C\), nên \(A H\) là đường cao.
- Chứng minh hai tam giác \(A H E\) và \(A K E\) bằng nhau:
- \(A E\) chung
- \(\angle A H E = \angle A K E = 90^{\circ}\) (do \(A H \bot B C\) và \(E K \bot A C\))
- \(A H = A K\) (do hình chiếu)
=> \(\triangle A H E \cong \triangle A K E\).
- \(A E\) vuông góc và đi qua trung điểm \(I\) của \(H K\) nên là đường trung trực của \(H K\).
c) Gọi \(I\) là giao điểm của \(B K\) và \(A E\). Chứng minh \(C I\) đi qua trung điểm của \(A B\)
- \(I = B K \cap A E\)
- Ta cần chứng minh đường thẳng \(C I\) đi qua trung điểm \(M\) của \(A B\).
Ý tưởng chứng minh:
- Sử dụng tính chất đối xứng và đồng dạng tam giác.
- Vì \(A E\) là đường trung trực của \(H K\), \(I\) là giao điểm của \(A E\) với \(B K\).
- Qua việc phân tích hình học và tọa độ hoặc vector, ta có thể chứng minh \(C I\) đi qua trung điểm \(M\) của \(A B\).
a: BC=10cm
b: Xét ΔBAD và ΔBED có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó:ΔBAD=ΔBED
Suy ra: \(\widehat{ABD}=\widehat{EBD}\)
hay BD là tia phân giác của góc ABC