Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A B C D H K M N I
a) Dễ thấy tứ giác AHDK là hình vuông => AH = AK = DH = DK
Áp dụng hệ quả ĐL Thales ta có các tỉ số \(\frac{HM}{KA}=\frac{MD}{KC}\left(=\frac{BM}{BK}\right)\)
Hay \(\frac{HM}{MD}=\frac{KA}{KC}=\frac{DB}{DC}=\frac{BH}{HA}\) (đpcm).
b) Từ câu a ta có \(\frac{MH}{MD}=\frac{KA}{KC}\). Do \(\frac{KA}{KC}=\frac{NH}{NC}\)(ĐL Thales) nên \(\frac{MH}{MD}=\frac{NH}{NC}\)
Áp dụng ĐL Thales đảo vào \(\Delta\)DHC ta được MN // CD hay MN // BC (đpcm).
c) Từ hệ quả ĐL Thales dễ có \(\frac{DM}{DH}=\frac{CK}{CA}=\frac{DK}{BA}=\frac{KN}{AH}\)
Mà DH = AH (cmt) nên DM = KN. Kết hợp với ^MDK = ^NKA (=900); DK = KA
Suy ra \(\Delta\)MKD = \(\Delta\)NAK (c.g.c) => ^MKD = ^NAK
Ta thấy ^MKD + ^AKM = 900 => ^NAK + ^AKM = 900 => MK vuông góc AN
Hoàn toàn tương tự ta cũng có NH vuông góc AM. Từ đó I là trực tâm \(\Delta\)MAN
=> AI vuông góc MN. Lại có MN // BC (câu b) nên AI vuông góc BC (đpcm).

a) Xét 2 tam giác BME và tam giác AHC
có \(\widehat{BME}=\widehat{AHC}=90^0\)
\(\widehat{ABC}chung\)
nên 2 tam giác BME và tam giác AHC đồng dạng với nhau
b)
xét tam giác ABH
có AE là phân giác của góc BAH
nên \(\widehat{MAE}=\widehat{HAE}\)
có \(\widehat{MAE}+\widehat{CAE}=90^0\)
\(\widehat{HAE}+\widehat{CEA}=90^0\)
suy ra \(\widehat{CAE}=\widehat{CEA}\)do đó tam giác AEc cân tại C
c)
xét tam giác AHC có
AD là tia phân giác của góc HAC
nên \(\frac{HD}{CD}=\frac{AH}{AC}\Rightarrow AH\cdot CD=DH\cdot AC\)
lại có AC = EC
nên \(AH\cdot CD=EC\cdot AC\)
d)
chứng minh tương tự câu b
ta có tam giác ABD cân tại B
suy ra AB = BD
mà AC = EC
nên AB + AC = BD + EC = BD + CD + ED = BC + DE

a, Xté tứ giác AMIN có :
BMI=MAN=INA=900
=> Tứ giác AMIN là hình chữ nhật
b, Xét ΔABC
có : BI=IC ( gt)
IN // AM ( gt )
=> AN=NC
mà IN=ND
=> Tứ giác ADCI là hình bình hành (1)
mà INC = 900 (2) Từ (1) và (2) => ADCI là hình thoi
c, Kẻ IQ // BK (QϵCD)
ΔBKC có :
BI = IC (gt)
IQ // BK (cách dựng )
cm tương tự : DK=KQ
=> DK=KQ=QC
=> DK/DC = 1/3

Hướng giải:
a) Hình chữ nhật : dấu hiệu tứ giác có 3 góc vuông là hình chữ nhật
b) C/m IN là đg tb của tam giác ABC => NA = NC
Tứ giác ADCI là hình thoi: dấu hiệu hai đg chéo vuông góc với nhau và cắt nhau tại trung điểm mỗi đường
c) BC cắt DC tại C chứ. (hai đoạn này chỉ có 1 điểm chung)
*CHÚ Ý: phía trên ko phải là bài giải. Chỉ lả gợi ý giải.