Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét hai tam giác ABH và tam giác ADH có
BH=HD(giả thiết)
góc BHA=góc DHA(=90 độ)
AH chung
Suy ra ABH=ADH(dpcm)
b,c,d dài qúa mik ko ghi nổi bạn thông cảm nhé^^
a) Xét tam giác AHB và tam giác AHE có
BH=HE
AH chung
góc AHE= góc AHB= 90 độ ( AH vuông góc với BC)
=> tam giác AHB= tam giác AHE (c.g.c)
=>HE=HB
b) Xét tam giác AHB và tam giác DHE có
góc DHE = góc AHB ( đối đỉnh)
HE=HB (cmt)
AH=HD
=> tam giác AHB=tam giác DHE (c.g.c)
=> DE= AB ( 2 cạnh tương ứng)
=> tam giác DHE= tam giác AHE =tam giác AHB
=> AE=DE(2 cạnh tương ứng)
c) Xét tam giác AHC và tam giác DHC có
HC chung
góc AHE=góc DHE=90 độ
AH=HD
=> tam giác AHC= tam giác DHC( cạnh huyền-góc nhọn)
=>AC=DC (2 cạnh tương ứng)
Xét tam giác ACE và tam giác DCE có
AE= DE (cmt)
AC= DC(cmt)
CE chung
=> tam giác ACE= tam giác DCE(c.c.c)
=> góc EAC= góc EDC (2 góc tương ứng)
d)Ta có: C,E,B thẳng hàng
=> góc CEA+ góc AEB= 180 độ
Mà góc CEN và góc AEB là 2 góc đối đỉnh
=>góc AEC+ góc CEN= 180 độ
=> A,E,N thẳng hàng
a) Xét ∆ADC có :
CH là trung tuyến AD ( AH = HD )
CH là đường cao
=> ∆ADC cân tại C
=> CH là phân giác DCA
Hay CB là phân giác DCA
b) Xét ∆ vuông BHA và ∆ vuông DHE ta có :
BHA = DHE
HA = HD
=> ∆BHA = ∆DHE (cgv-gn)
=> BAH = HDE
Mà 2 góc này ở vị trí so le trong
=> BA//DE
c) Chứng minh DKA = 90°
=> HK = HD = HA ( tính chất )
=> HK = \(\frac{1}{2}\:AD\)
a, xét tam giác ABH và tam giác DBH có : BH chung
góc AHB = góc DHB = 90
AH = HD (gt)
=> tam giác AHB = tam giác DBH (2cgv)
a) Xét \(\Delta ABH\)và \(\Delta DBH\)
ta có AH = DH (gt)
\(\widehat{AHB}=\widehat{DHB}=\left(90^0\right)\)
BH chung
nên \(\Delta ABH=\Delta DBH\left(c-g-c\right)\)
b) Dễ chứng minh \(\Delta AHC=\Delta DHC\left(c-g-c\right)\)
\(\Rightarrow\widehat{ACH}=\widehat{DCH}\)
do đó CH là tpg của \(\widehat{ACD}\)
c) Dễ chứng minh \(\Delta BHD=\Delta EHA\left(g-c-g\right)\)
\(\Rightarrow BH=HE\)
Xét \(\Delta ABH\)và \(\Delta DEH\)
ta có BH = HE (cmt)
\(\widehat{AHB}=\widehat{DHE}\left(=90^0\right)\)
AH = DH (gt)
nên \(\Delta ABH=\Delta DEH\left(c-g-c\right)\)
suy ra \(\widehat{ABH}=\widehat{EDH}\)
mà hai góc này ở vị trí so le trong
do đó AB // DE