Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H I D O
a, H là trực tâm của tg ABC => BH _|_ AC mà CD _|_ AC => BH // DC
CH _|_ AB mà BD _|_ AB => CH // BD
=> BHCD là hình bình hành
b, BHCD là hbh (Câu a) => BC cắt HD tại trung điểm của mỗi đường
mà có I là trung điểm của BC )gt-
=> I là trung điểm của HD
=> H;I;D thẳng hàng
c, xét tam giác AHD có : H là trung điểm của HD và o là trung điểm của AD
=> OI là đường trung bình của tam giác AHD
=> OI = AH/2
=> 2OI = AH
d, đang nghĩ
a) Tứ giác BHCDBHCD có:
BH//DC (do cùng ⊥AC
CH//BD (do cùng ⊥AB
⇒BHCD là hình bình hành (
a) \(S_{ẠHKI}=AH^2=4\) (cm2).
b) Áp dụng định lý Thales ta có:
\(\dfrac{AF}{AC}=\dfrac{HK}{HC}\Leftrightarrow\dfrac{AF}{AC}=\dfrac{AH}{HC}\).
Lại có: \(\Delta AHC\sim\Delta BAC\left(g.g\right)\Rightarrow\dfrac{AH}{HC}=\dfrac{BA}{AC}\).
Do đó AF = BA. Dễ dàng suy ra được ABEF là hình vuông.
c) Tứ giác FKEB nội tiếp đường tròn đường kính FB nên:
\(\widehat{EKB}=\widehat{EFB}=45^o\) (cùng chắn cung EB).
Mà \(\widehat{IHK}=45^o\) nên HI // EK.
d) Gọi X là giao điểm của BF và AE.
5 điểm F, K, E, B, A cùng thuộc đường tròn đường kính FB mà XF = XE = XA = XB nên XK = XA.
Từ đó X nằm trên đường trung trực của AK hay X nằm trên IH.
Vậy ta có đpcm.
B C A x y M N 6 8
Vì cậu chỉ nhờ làm phần d nên mk chỉ làm phần d thôi nhé!
Với lại đề của phần d cậu viết nhầm phải sửa thành: \(CM:S_{\Delta AMB}=\frac{9}{16}S_{\Delta ANC}\)nữa ạ!
Bài làm:
Ta có: \(\widehat{MAB}+\widehat{BAC}+\widehat{NAC}=180^0\)
\(\Rightarrow\widehat{MAB}+\widehat{NAC}=90^0\left(1\right)\)
Xét trong tam giác vuông ANC có \(\widehat{NAC}+\widehat{NCA}=90^0\left(2\right)\)
Từ (1),(2)
=> \(\widehat{NCA}=\widehat{MAB\left(3\right)}\)
Ta có: \(\Delta MBA~\Delta NAC\left(g.g\right)\)
vì \(\hept{\begin{cases}\widehat{NCA}=\widehat{MAB}\left(theo\left(3\right)\right)\\\widehat{BMA}=\widehat{ANC}=90^0\end{cases}}\)
\(\Rightarrow\frac{S_{\Delta AMB}}{S_{\Delta ANC}}=\left(\frac{AB}{AC}\right)^2=\left(\frac{6}{8}\right)^2=\frac{9}{16}\)
\(\Rightarrow S_{\Delta AMB}=\frac{9}{16}S_{\Delta ANC}\)
=> đpcm
Chúc bạn học tốt!
A B C H K I F E
a) Tứ giác AHKI là hình vuông \(\Rightarrow S_{AHKI}=AH^2=2^2=4\left(cm^2\right)\)
b) Xét \(\Delta ABH\)và \(\Delta AFI\)có:
+) \(\widehat{AIF}=\widehat{AHB}=90^o\)
+) \(AH=AI\)( vì \(AHKI\)là hình vuông )
+) \(\widehat{BAH}=\widehat{IAF}\)( cùng phụ với \(\widehat{HAC}\))
\(\Rightarrow\Delta ABH=\Delta AFI\left(g.c.g\right)\)\(\Rightarrow AB=AF\)
Xét tứ giác \(ABEF\)có: \(BE//AF\), \(AB//EF\), \(\widehat{BAC}=90^o\), \(AB=AF\)
\(\Rightarrow ABEF\)là hình vuông ( đpcm )