Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho tam giác ABC vuông cân ở A, biết AB=6cm, AC=8cm, kẻ AH vuông góc với BC tại H. Tính AH, BH và HC
Mình làm câu 1 trước, vừa làm vừa nêu hướng dẫn giải vì các câu sau làm tương tự.
Bước 1: Xét tam giác, lấy bình phương của cạnh lớn nhất.
Xét \(\Delta ABC\)có \(AC^2=\left(\sqrt{5}\right)^2=5\)
Kế tiếp ta xét tổng các bình phương của hai cạnh còn lại:
Lại có \(AB^2+BC^2=1^2+2^2=1+4=5\)
Cuối cùng, xét xem kết quả của 2 phép tính trên có bằng nhau hay không. Theo định lý Pytago đảo, nếu binh phương cạnh lớn nhất mà bằng tổng các bình phương 2 cạnh còn lại thì tam giác đó vuông. (tại đỉnh đối diện với cạnh lớn nhất), nếu không bằng thì không phải tam giác vuông.
\(\Rightarrow AC^2=AB^2+BC^2\left(=5\right)\)
\(\Rightarrow\Delta ABC\)vuông tại B
A B C H
Theo định lý Pytago ta có:
\(AB^2=BH^2+AH^2\)
\(AC^2=CH^2+AH^2\)
Vì \(BH< CH\Leftrightarrow BH^2< CH^2\Leftrightarrow BH^2+AH^2< CH^2+AH^2\)
\(\Rightarrow AB^2< AC^2\Rightarrow AB< AC\)
=> đpcm
H ở chỗ nào vậy bạn?
mình xin lỗi, mình chép nhầm đề