K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2019

VÌ AM LÀ ĐƯỜNG TRUNG TUYẾN ỨNG VỚI CẠNH HUYỀN

SUY RA AM=1/2*BC=1/2*10=5 CM

XÉT TAM GIÁC AHM VUÔNG TẠI H[VÌ AH LÀ ĐƯỜNG CAO]

SUY RA MH^2=AM^2-AH^2[PI TA GO]

MH^2=5^2-4,8^2

MH^2=1,96

MH=1,4

LẠI CÓ

BH=BM+MH=1/2*BC+1,4=5+1,4=6,4[CM]

TA CÓ:

CH=CM-MH=1/2BC-MH=5-1,4=3,6

TAM GIÁC ABH

AB^2=BH^2+AH^2

SUY RA AB^2=6,4^2+4,8^2=64          AB=8[CM]

TAM GIÁC ABC

AC^2=BC^2-AB^2

AC^2=10^2-8^2=36                    AC=6[CM]

NV
9 tháng 8 2021

Ta có:

\(cosB=\dfrac{AB}{BC}\Rightarrow AB=BC.cosB=10.0,8=8\left(cm\right)\)

\(AC=\sqrt{BC^2-AB^2}=6\left(cm\right)\)

b.

\(sinC=\dfrac{AB}{BC}=\dfrac{8}{10}=0,8\)

\(cosC=\dfrac{AC}{BC}=\dfrac{6}{10}=0,6\)

\(tanC=\dfrac{AB}{AC}=\dfrac{8}{6}=\dfrac{4}{3}\)

\(cotC=\dfrac{AC}{AB}=\dfrac{3}{4}\)

29 tháng 12 2018

Vì AB^2 + AC^2 = BC^2 ( 6^2 + 8^2 = 10^2 )
=> ΔABC vuông tại A
a. Vì Am là trung tuyến của BC
=> AM =1/2 BC
=> AM = 5cm.
b. Xét tứ giác ADME, ta có:
góc DAE + góc AEM + góc EMD + góc MDA = 360°
=> 90° + 90° + góc EMD + 90° = 360°
=> góc EMD = 90°
=> Tứ giác ADME là hình chữ nhật.