K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2022

a)  Áp dụng định lý Pytagoo vào tam giác vuông ABC ta có:

    BC2=AB2+AC2BC2=AB2+AC2

⇔⇔BC2=4,52+62=56,25BC2=4,52+62=56,25

⇔⇔BC=√56,25=7,5BC=56,25=7,5 cm

     Xét  ΔABCΔABCvà     ΔDECΔDEC  CÓ:

        ˆBAC=ˆEDC=900BAC^=EDC^=900

        ˆACBACB^   CHUNG

Suy ra:   ΔABC ΔDECΔABC ΔDEC

⇒⇒BCEC=ACDCBCEC=ACDC  ⇒⇒EC=BC.DCACEC=BC.DCAC

HAY    EC=7,5×26=2,5EC=7,5×26=2,5

b)   Áp dụng định lý Pytago vào tam giác vuông DEC ta có:

      DE2=EC2−DC2DE2=EC2−DC2

⇔⇔DE2=2,52−22=2,25DE2=2,52−22=2,25

⇔⇔DE=√2,25=1,5DE=2,25=1,5

Vậy   SDEC=DE.DC2=1,5×22=1,5SDEC=DE.DC2=1,5×22=1,5CM2

30 tháng 3 2022

a)  Áp dụng định lý Pytagoo vào tam giác vuông ABC ta có:

    BC2=AB2+AC2BC2=AB2+AC2

⇔⇔BC2=4,52+62=56,25BC2=4,52+62=56,25

⇔⇔BC=√56,25=7,5BC=56,25=7,5 cm

     Xét  ΔABCΔABCvà     ΔDECΔDEC  CÓ:

        ˆBAC=ˆEDC=900BAC^=EDC^=900

        ˆACBACB^   CHUNG

Suy ra:   ΔABC ΔDECΔABC ΔDEC

⇒⇒BCEC=ACDCBCEC=ACDC  ⇒⇒EC=BC.DCACEC=BC.DCAC

HAY    EC=7,5×26=2,5EC=7,5×26=2,5

b)   Áp dụng định lý Pytago vào tam giác vuông DEC ta có:

      DE2=EC2−DC2DE2=EC2−DC2

⇔⇔DE2=2,52−22=2,25DE2=2,52−22=2,25

⇔⇔DE=√2,25=1,5DE=2,25=1,5

Vậy   SDEC=DE.DC2=1,5×22=1,5SDEC=DE.DC2=1,5×22=1,5CM2

23 tháng 4 2016

sorry, em mới học lớp 4 thôi

28 tháng 3 2018

a)  Áp dụng định lý Pytagoo vào tam giác vuông ABC ta có:

    \(BC^2=AB^2+AC^2\)

\(\Leftrightarrow\)\(BC^2=4,5^2+6^2=56,25\)

\(\Leftrightarrow\)\(BC=\sqrt{56,25}=7,5\) cm

     Xét  \(\Delta ABC\)và     \(\Delta DEC\)  CÓ:

        \(\widehat{BAC}=\widehat{EDC}=90^0\)

        \(\widehat{ACB}\)   CHUNG

Suy ra:   \(\Delta ABC~\Delta DEC\)

\(\Rightarrow\)\(\frac{BC}{EC}=\frac{AC}{DC}\)  \(\Rightarrow\)\(EC=\frac{BC.DC}{AC}\)

HAY    \(EC=\frac{7,5\times2}{6}=2,5\)

b)   Áp dụng định lý Pytago vào tam giác vuông DEC ta có:

      \(DE^2=EC^2-DC^2\)

\(\Leftrightarrow\)\(DE^2=2,5^2-2^2=2,25\)

\(\Leftrightarrow\)\(DE=\sqrt{2,25}=1,5\)

Vậy   \(S_{DEC}=\frac{DE.DC}{2}=\frac{1,5\times2}{2}=1,5\)CM2

5 tháng 5 2021

mình trả lười nhầm ạ 

23 tháng 4 2018

a) XétΔABC và ΔDEC có : 

góc A = góc CED = 90O (gt)

góc C chung

=> tam giác ABC đông dạng tam giác EDC ( g.g )

b) Áp dụng định lí Pi-ta-go vào tam giác vuông ABC, ta có :

BC=AB2+AC2−−−−−−−−−−√=32+42−−−−−−√=25−−√=5(cm)

AD là phân giác góc A, nên :

DBDC=ABAC

DBDC+DB=ABAC+ABhay DBBC=ABAC+AB

DB5=34+3 => DB = 5.34+3= 1,5 (cm)

d) Diện tích tam giác ABC là :

SABC=12AB.AC=12.3.4=6(cm2)

Bạn kham khảo link này nhé.

Câu hỏi của Trần Ngô Anh Tuyền - Toán lớp 8 - Học toán với OnlineMath

15 tháng 4 2019

Link đâu ạ em tham khảo vs 

Câu 1: Cho hình bình hành ABCD có đường chéo AC>DB. Vẽ CE vuông góc đường thẳng AB tại E, vẽ CF vuông góc đường thẳng AD tại F. Chứng minh a) Tam giác ABH đồng dạng tam giác ACE b) Tam giác BHC đồng dạng tam giác CFA c) Tổng AB.AE+AD.AF không đổi Câu 2: Cho tam giác ABC vuông tại A, đường cao AH(H thuộc BC) và phân giác BE của ABC(E thuộc AC) cắt nhau tại I. Chứng minh: a) IH.AB=IA.BH b) BHA đồng dạng BAC...
Đọc tiếp

Câu 1: Cho hình bình hành ABCD có đường chéo AC>DB. Vẽ CE vuông góc đường thẳng AB tại E, vẽ CF vuông góc đường thẳng AD tại F. Chứng minh 
a) Tam giác ABH đồng dạng tam giác ACE 
b) Tam giác BHC đồng dạng tam giác CFA 
c) Tổng AB.AE+AD.AF không đổi 
Câu 2: Cho tam giác ABC vuông tại A, đường cao AH(H thuộc BC) và phân giác BE của ABC(E thuộc AC) cắt nhau tại I. Chứng minh: 
a) IH.AB=IA.BH 
b) BHA đồng dạng BAC => AB^2=BH.BC 
c) IH/IA = AE/EC 
d) AIE cân 
Câu 3: Cho góc nhọn xOy, lần lượt lấy trên Ox các điểm A,B sao cho OA= 3 cm, OB=10cm. Trên Oy lấy lần lượt các điểm C,D sao cho OC=5cm, OD=6cm. Hai đoạn thẳngAD và BC cắt nhau tại I: 
a) AOD đồng dạng COB 
b) AIB đồng dạng CID 
c) IA.ID=IC.IB 
d) Cho diện tích ICD= 3 cm^2. Hãy tính diện tích của IAB?

0