Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)
AD là phân giác
=>BD/CD=AB/AC=3/4
=>4DB=3CD
mà DB+DC=15
nên DB=45/7cm; DC=60/7cm
b: Xet ΔABC vuông tại A và ΔEDC vuông tại E có
góc C chung
=>ΔABC đồng dạng với ΔEDC
A B C 9 12 D E
a, Xét tam giác ABC và tam giác EDC ta có :
^C _ chung
\(\frac{BC}{DC}=\frac{AC}{EC}\)
^BAE = ^CED = 90^0
=> tam giác ABC ~ tam giác CED ( g.c.g )
HAB ? ^H ở đâu bạn ?
b, Vì AD là tia phân giác tam giác ABC ta có :
\(\frac{AB}{AC}=\frac{BD}{DC}\Leftrightarrow\frac{9}{12}=\frac{BD}{DC}\)
hay \(\frac{BD}{DC}=\frac{9}{12}\)tự tính BD và CD nhé
c, Vì AB vuông AC ; DE vuông AC => AB // DE. Áp dụng hệ quả Ta lét :
\(\frac{CE}{BC}=\frac{DE}{AB}\)thay dữ liệu bên phần b tính
d, Áp dụng Py ta go với dữ kiện bên trên tìm tí số
a: BD/CD=3/4
=>BD/3=CD/4=15/7
=>BD=45/7cm; CD=60/7cm
b: Xét ΔABC vuông tại A và ΔEDC vuông tại E có
góc C chung
=>ΔABC đồng dạng vớiΔEDC
c: AB/ED=CB/CD=7/4
=>9/ED=7/4
=>ED=9*4/7=36/7cm
a:
Ta có: DE\(\perp\)AC
AB\(\perp\)AC
Do đó: DE//AB
Xét ΔCAB có ED//AB
nên \(\dfrac{CE}{EA}=\dfrac{CD}{DB}\)
=>\(\dfrac{BD}{DC}=\dfrac{AE}{EC}\)
b: Xét ΔHBA vuông tại H và ΔEDC vuông tại E có
\(\widehat{EDC}=\widehat{HBA}\)(hai góc đồng vị, DE//AB)
Do đó: ΔHBA~ΔEDC
Cho tam giác ABC có AB = 3cm, AC = 4cm, BC = 5cm. a) Chứng minh tam giác ABC vuông tại A. b) Vẽ tia phân giác BD (D thuộc AC). Vẽ tia phân giác BD (D thuộc AC), từ D vẽ DE vuông góc với BC (E thuộc BD). AD cắt AB tại F, ED cắt AB tại F. Chứng minh DA = DE và DF > DE Phần c
A B C 3 4 D E 5 15/7
a, Xét tam giác ABC và tam giác DEC ta có
^BAC = ^EDC = 900
^C_ chung
Vậy tam giác ABC ~ tam giác DEC ( g.g )
b, tam giác ABC vuông tại A
Áp dụng định lí Py ta go cho tam giác ABC vuông tại A ta có :
\(AB^2+AC^2=BC^2\Rightarrow BC^2=9+16=25\Rightarrow BC=5\)cm
Vì AD là tia phân giác ^A nên \(\frac{AB}{AC}=\frac{BD}{DC}\)mà DC = BC - BD = 5 - BD
\(\Rightarrow\frac{3}{4}=\frac{BD}{5-BD}\Rightarrow15-3BD=4BD\)
\(\Rightarrow7BD=15\Rightarrow BD=\frac{15}{7}\)cm
c, Ta có : \(DC=BC-BD=5-\frac{15}{7}=\frac{20}{7}\)cm
Áp dụng định lí Py ta go cho tam giác vuông tại D ta được :
\(AD^2+DC^2=AC^2\Rightarrow AD^2=AC^2-DC^2=16-\frac{400}{49}\)
\(\Rightarrow AD^2=\frac{384}{49}\Rightarrow AD=\frac{8\sqrt{6}}{7}\)xem sai ở đâu hộ mình nhé, chứ nếu theo hệ thức lượng thì như này
*\(AD.BC=AB.AC\Rightarrow AD=\frac{12}{5}\)*
d, \(S_{ABC}=\frac{1}{2}AB.AC=\frac{1}{2}.3.4=6\)