Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta ABC\)vuông tại B
Áp dụng định lí Py-ta-go ta có :
\(\Rightarrow BC^2=AC^2+AB^2\)
\(\Rightarrow BC^2=20^2-12^2=256\)
\(\Rightarrow BC=\sqrt{256}=16\left(cm\right)\)
Tam giác ABC vuông tại B
=>AB2+BC2=AC2 (theo định lí Pi-ta-go)
Hay 122+BC2=202
=>144+BC2=400
=>BC2=400-144
=>BC2=256
=>BC2=162
Vậy BC=16cm
*Bạn tự vẽ hình nhé!
Áp dụng đ/lí Pi-ta-go trong tam giác ABC vuông tại A có:
BC2 = AB2 + AC2
hay BC2 = 202 + 152
=> BC2 = 625 = 252
=> BC = 25 (cm)
Áp dụng đ/lí Pi-ta-go trong tam giác AHB vuông tại H có:
AB2 = AH2 + HB2
=> BH2 = AB2 - AH2
=> BH2 = 202 - 122
=> BH2 = 256 = 162
=> BH = 16 (cm)
Mà H thuộc BC nên H nằm giữa BC
=> BH + HC = BC
=> 16 + HC = 25
=> HC = 25 - 16
=> HC = 9 (cm)
Vậy BC = 25 cm; BH = 16 cm; CH = 9 cm.
tam giác AHB vuông tại H ,THEO ĐỊNH LÝ PYTA GO TA CÓ
AB^2=AH^2+BH^2=>AB^2=169=>AB=13 CM
TAM GIÁC AHC VUÔNG TẠI H,THEO ĐỊNH LÝ PYTA GO TA CÓ
HC^2+AH^2=AC^2=>HC^2=AC^2-AH^2=>HC^2=256=>HC=16CM
VÌ H NẰM GIỮA BC => BC=BH+HC=21 CM
=>CHU VI TAM GIÁC ABC LÀ
AB+AC+BC=13+21+20=54 CM
Xét tam giác ABC cân tại A: M là trung điểm của BC(gt)
=> AM là trung tuyến
Xét tam giác ABC cân tại A: AM là trung tuyến (cmt)
=> AM là đường cao (TC các đường trong tam giác cân)
Xét tam giác EBC: EM là trung tuyến (AM là trung tuyến, E thuộc AM)
EM là đường cao (AM là đường cao, E thuộc AM)
=> Tam giác EBC cân tại E
M là trung điểm của BC (gt) => BM = \(\dfrac{BC}{2}=\dfrac{12}{2}=6\left(cm\right)\)
Xét tam giác AMB vuông tại M (AM \(\perp BM\))
AB2 = AM2 + BM2 (định lý Py ta go)
Thay số: AB2 = 82 + 62
<=> AB2 = 100
<=> AB = 10 (cm)
Vậy AB = 10 (cm)
Bài 1:
Xét ∆ABC vuông tại A, AH \(\perp\) BC:
Ta có: AH2 = BH . HC (hệ thức lượng)
<=> 122 = 9 . HC
<=> HC = \(\dfrac{12^2}{9^{ }}=\dfrac{144}{9}=16\left(cm\right)\)
Vậy HC = 16 (cm)
Ta có: BC = BH + HC = 9 + 16 = 25 (cm)
Xét ∆ABC vuông tại A, AH \(\perp\) BC:
Ta có: AB2 = BH . BC (hệ thức lượng)
<=> AB2 = 9 . 25
<=> AB2 = 225
<=> AB = 15 (cm)
Vậy AB = 15 (cm)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AC^2=BC^2-AB^2=20^2-12^2=256\)
hay AC=16(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=\dfrac{12^2}{20}=7.2\left(cm\right)\\CH=\dfrac{AC^2}{BC}=\dfrac{16^2}{20}=12.8\left(cm\right)\end{matrix}\right.\)
Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AB^2=AH^2+HB^2\)
\(\Leftrightarrow AH^2=AB^2-HB^2=12^2-7.2^2=92.16\)
hay AH=9,6(cm)
Vậy: AC=16cm; BH=7,2cm; CH=12,8cm; AH=9,6cm
A B C H 12 CM 20 CM 5 CM A) tam giác ABH vuông tại A . Theo định lí Py-Ta Go ta có
\(AH^2+BH^2=AB^2\)
THAY BH = 5CM , AH = 12 CM , ta được
\(12^2+5^2=AB^2\)
\(AB^2\)= 144+25 =169
AB =\(\sqrt{169}\)=13 CM
SORRY MÌNH CHỈ GIẢI ĐƯỢC CÂU A THÔI
MONG BẠN THÔNG CẢM
A B C H 20 12 5
a, Xét tam giác AHB, có ^AHB = 900
Áp dụng định lí Py ta go ta có :
\(AB^2=AH^2+HB^2=144+25=169\)
\(\Rightarrow AB^2=169\Rightarrow AB=13\)cm
b, Xét tam giác ACH, có ^AHC = 900
Áp dụng định lí Py ta go ta có :
\(AC^2=AH^2+CH^2\Rightarrow CH^2=AC^2-AH^2\)
\(=400-144=256\Rightarrow CH=\sqrt{256}=16\)cm
Vậy BC = CH + HB = 16 + 5 = 21 cm
Chu vi tam giác ABC là :
\(P_{\Delta ABC}=20+21+13=54\)cm
Tam giác ABC vuông tại A. => AB^2+AC^2=BC^2
12^2+AC^2=20^2
AC^2=400-144
AC^2=256
AC=\(\sqrt{256}=16cm\)
Áp dụng Pytato vào tam giác ta được :
AB^2 +AC^2 = BC^2
=> 12^2 +AC^2=20^2
=> AC^2=20^2-12^2=256
=> AC=16 (cm)