K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2023

MMB nhá thằng bạn thân :))) tra mạng mà cũng gặp bạn học cùng lớp :)))

2 tháng 4 2023

lâm yêu thùy

a: Xét ΔABD và ΔACE có

AB=AC

góc ABD=góc ACE

BD=CE

=>ΔABD=ΔACE

=>AD=AE

Xét ΔBHD vuông tại H và ΔCKE vuông tại K có

BD=CE

góc D=góc E

=>ΔBHD=ΔCKE

=>BH=CK

b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

BH=CK

=>ΔAHB=ΔAKC

 

a: Xét ΔABD và ΔACE có 

AB=AC
\(\widehat{ABD}=\widehat{ACE}\)

BD=CE

DO đó: ΔABD=ΔACE

Suy ra: AD=AE

Xét ΔBHD vuông tại H và ΔCKE vuông tại K có

BD=CE
\(\widehat{D}=\widehat{E}\)

Do đó: ΔBHD=ΔCKE

Suy ra: BH=CK

b: Xét ΔABH vuông tại H và ΔACK vuông tại K có 

AB=AC

BH=CK

Do đó: ΔABH=ΔACK

23 tháng 1 2016

chứng minh các tam giác = nhau là đc mà

dễ 

23 tháng 1 2016

câu a kìa vẽ hình ra thì bít

 

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:a) BD là đường trung trực của AE.b) AD<DCc) Ba điểm E, D, F thẳng hàngBài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.a) Tính BCb) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCBc) Trên tia đối của tia DB lấy điểm E sao cho...
Đọc tiếp

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:

a) BD là đường trung trực của AE.

b) AD<DC

c) Ba điểm E, D, F thẳng hàng


Bài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.

a) Tính BC

b) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCB

c) Trên tia đối của tia DB lấy điểm E sao cho DE=DC. Chứng minh tam giác BCE vuông

d)Chứng minh:DF là phân giác của góc ADE và BE vuông góc CF


Bải 3: Cho tam giác đều ABC. Tia phân giác góc B cắt cạnh AC ở M. Từ A kẻ đường thẳng vuông góc với AB cắt các tia BM, BC lần lượt ở M và E. Chứng minh:

a) Tam giác ANC là tam giác cân

b) NC vuông góc BC

c) Tam giác AEC là tam giác cân

d) So sánh BC và NE


Bài 4: Cho tam giác nhọn ABC, kẻ BM vuông góc AC, CN vuông góc AB. Trên tia đối của tia BM lấy điểm D sao cho BD=AC, trên tia đối của tia CN lấy điểm E sao cho CE=AB. Chứng minh:

a) Góc ACE= góc ABD

b) Tam giác ABD = tam giác ECA

c) Tam giác AED là tam giác vuông cân

0
12 tháng 2 2020

Bạn tự vẽ hình nhaleu

AD = AB + BD

AE = AC + CE

mà AB = AC (tam giác ABC cân tại A)

      BD = CE (gt)

=> AD = AE

HAE = HAB + BAE

KAD = KAC + CAD

mà HAB = KAC (tam giác AHB = tam giác AKC)

=> HAE = KAD 

Xét tam giác AHE và tam giác AKD có:

AD = AE (chứng minh trên)

HAE = KAD (chứng minh trên)

AH = AK (tam giác AHB = tam giác AKC)

=> Tam giác AHE = Tam giác AKD (c.g.c)

Chúc bạn học tốtok

12 tháng 2 2020

a) Xét ΔΔvuông HBD và ΔΔvuông KCE, có:

BD=CE (gt)

B1ˆB1^=B2ˆB2^ (đối đỉnh)

C1ˆC1^=C2ˆC2^(đối đỉnh)

Mà B1ˆB1^=C1ˆC1^(gt)

nên B2ˆB2^=C2ˆC2^

Do đó:ΔΔ HBD = ΔΔKCE (c.h-g.n)

=>HB=CK (2 cạnh tương ứng)

b)Xét ΔΔAHB và ΔΔAKC có:

HB=CK (c/m trên)

AB=AC (gt)

ABHˆABH^=ACKˆACK^ (vì ABHˆABH^=1800-B1ˆB1^ ; ACKˆACK^=180o-C1ˆC1^ mà B1ˆB1^=C1ˆC1^)

c)

Do đó: ΔΔAHB = ΔΔAKC (c-g-c)

=>AHBˆAHB^=AKCˆAKC^ (2 góc tương ứng)

21 tháng 12 2023

a:

Ta có: \(\widehat{ABC}+\widehat{ABE}=180^0\)(hai góc kề bù)

\(\widehat{ACB}+\widehat{ACF}=180^0\)(hai góc kề bù)

mà \(\widehat{ABC}=\widehat{ACB}\)(ΔABC cân tại A)

nên \(\widehat{ABE}=\widehat{ACF}\)

Xét ΔABE và ΔACF có

AB=AC

\(\widehat{ABE}=\widehat{ACF}\)(cmt)

BE=CF

Do đó: ΔABE=ΔACF

=>AE=AF

=>ΔAEF cân tại A

b: Xét ΔBHE vuông tại H và ΔCKF vuông tại K có

BE=CF

\(\widehat{E}=\widehat{F}\)(ΔABE=ΔACF)

Do đó: ΔBHE=ΔCKF

c: Ta có: ΔBHE=ΔCKF

=>BH=CK và \(\widehat{HBE}=\widehat{KCF}\) và EH=KF

Ta có: AH+HE=AE

AK+KF=AF

mà HE=KF và AE=AF

nên AH=AK

Xét ΔAHI vuông tại H và ΔAKI vuông tại K có

AI chung

AH=AK

Do đó: ΔAHI=ΔAKI

=>IH=IK

=>ΔIHK cân tại I