Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AEMF có
AE//MF
AF//ME
góc FAE=90 độ
=>AEMF là hình chữ nhật
Xét ΔABC có
M là trung điểm của BC
ME//AC
=>E là trung điểm của AB
Xét ΔABC có
m là trung điểm của BC
MF//AB
=>F là trung điểm của AC
Xét ΔCAB có MF//AB
nên MF/AB=CM/CB=1/2
=>MF=1/2BA=EB
mà MF//EB
nên MFEB là hbh
b: AEMF là hcn
=>AM cắt EF tại trung điểm của mỗi đường
=>O là trung điểm của EF
=>OE=OF
a: Xét tứ giác AEMF có
\(\widehat{AEM}=\widehat{AFM}=\widehat{FAE}=90^0\)
Do đó: AEMF là hình chữ nhật
b: Xét ΔABC có
M là trung điểm của BC
ME//AC
Do đó: E là trung điểm của AB
=>AE=3cm
Xét ΔABC có
M là trung điểm của BC
MF//AB
Do đó: F là trung điểm của AC
=>AF=4cm
\(S_{AEMF}=AE\cdot AF=3\cdot4=12\left(cm^2\right)\)
c: Xét tứ giác ABNC có
M là trung điểm của BC
M là trung điểm của AN
Do đó: ABNC là hình bình hành
mà \(\widehat{BAC}=90^0\)
nên ABNC là hình chữ nhật
a: \(BC=\sqrt{8^2+6^2}=10\left(cm\right)\)
AM=BC/2=5cm
b: Xét tứ giác AEMF có
góc AEM=góc AFM=góc FAE=90 độ
nen AEMF là hình chữ nhật
c: Xét tứ giác AMBN có
F là trung điểm chung của AB và MN
MA=MB
Do đó: AMBN là hình thoi
a) Xét tứ giác AEMF có
\(\widehat{EAF}=90^0\)(\(\widehat{BAC}=90^0\), E∈AB, F∈AC)
\(\widehat{AEM}=90^0\)(ME⊥AB)
\(\widehat{AFM}=90^0\)(MF⊥AC)
Do đó: AEMF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=5^2+12^2=169\)
\(\Leftrightarrow BC=\sqrt{169}=13cm\)
Ta có: ΔABC vuông tại A(gt)
mà AM là đường trung tuyến ứng với cạnh huyền BC(M là trung điểm của BC)
nên \(AM=\dfrac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)
hay \(AM=\dfrac{13}{2}=6.5cm\)
Ta có: AEMF là hình chữ nhật(cmt)
nên AM=EF(Hai đường chéo của hình chữ nhật AEMF)
mà AM=6,5cm
nên EF=6,5cm
Vậy: EF=6,5cm
c) Xét ΔABC có
M là trung điểm của BC(gt)
ME//AC(ME//AF, C∈AF)
Do đó: E là trung điểm của AB(Định lí 1 đường trung bình của tam giác)
⇒\(AE=\dfrac{AB}{2}=\dfrac{5}{2}=2.5cm\)
Xét ΔABC có
M là trung điểm của BC(gt)
MF//AB(MF//AE, B∈AE)
Do đó: F là trung điểm của AC(Định lí 1 đường trung bình của tam giác)
⇒\(AF=\dfrac{AC}{2}=\dfrac{12}{2}=6cm\)
Ta có: AEMF là hình chữ nhật(cmt)
nên \(S_{AEMF}=AE\cdot AF=2.5\cdot6=15cm^2\)
Sửa đề:
Cho tam giác ABC vuông ở A, M là trung điểm của BC. Từ M kẻ ME, MF lần lượt song song AC, AB, E thuộc AB, F thuộc AC
a) Tứ giác BEFM, AEMF là hình gì?
b) Gọi O là trung điểm của AM Chứng minh OE=OF
Giải
a) *) Tứ giác BEFM là hình gì?
Do M là trung điểm BC (gt)
MF // AB (gt)
⇒ F là trung điểm của AC
⇒ MF là đường trung bình của ∆ABC
⇒ MF = AB : 2
Lại có:
ME // AC (gt)
M là trung điểm BC (gt)
⇒ E là trung điểm AB
⇒ AE = BE = AB : 2
Mà MF = AB : 2 (cmt)
⇒ MF = BE = AB : 2
Do MF // AB (gt)
⇒ MF // BE
Xét tứ giác BEFM có:
MF // BE (cmt)
MF = BE (cmt)
⇒ BEFM là hình bình hành
*) AEMF là hình gì?
Do ME // AC (gt)
AC ⊥ AB
⇒ ME ⊥ AB
⇒ ∠MEA = 90⁰
Do MF // AB
AB ⊥ AC
⇒ MF ⊥ AC
⇒ ∠MFA = 90⁰
Tư giác AEMF có:
∠MEA = ∠MFA = ∠EAF = 90⁰
⇒ AEMF là hình chữ nhật
b) Do O là trung điểm của AM
AEMF là hình chữ nhật
⇒ O là trung điểm của EF
⇒ OE = OF