K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2023

Sửa đề:

Cho tam giác ABC vuông ở A, M là trung điểm của BC. Từ M kẻ ME, MF lần lượt song song AC, AB, E thuộc AB, F thuộc AC 

a) Tứ giác BEFM, AEMF là hình gì?

b) Gọi O là trung điểm của AM Chứng minh OE=OF

Giải

a) *) Tứ giác BEFM là hình gì?

Do M là trung điểm BC (gt)

MF // AB (gt)

⇒ F là trung điểm của AC

⇒ MF là đường trung bình của ∆ABC

⇒ MF = AB : 2

Lại có:

ME // AC (gt)

M là trung điểm BC (gt)

⇒ E là trung điểm AB

⇒ AE = BE = AB : 2

Mà MF = AB : 2 (cmt)

⇒ MF = BE = AB : 2

Do MF // AB (gt)

⇒ MF // BE

Xét tứ giác BEFM có:

MF // BE (cmt)

MF = BE (cmt)

⇒ BEFM là hình bình hành

*) AEMF là hình gì?

Do ME // AC (gt)

AC ⊥ AB

⇒ ME ⊥ AB

⇒ ∠MEA = 90⁰

Do MF // AB

AB ⊥ AC

⇒ MF ⊥ AC

⇒ ∠MFA = 90⁰

Tư giác AEMF có:

∠MEA = ∠MFA = ∠EAF = 90⁰

⇒ AEMF là hình chữ nhật

b) Do O là trung điểm của  AM

AEMF là hình chữ nhật

⇒ O là trung điểm của EF

⇒ OE = OF

a: Xét tứ giác AEMF có

AE//MF

AF//ME

góc FAE=90 độ

=>AEMF là hình chữ nhật

Xét ΔABC có

M là trung điểm của BC

ME//AC

=>E là trung điểm của AB

Xét ΔABC có

m là trung điểm của BC

MF//AB

=>F là trung điểm của AC

Xét ΔCAB có MF//AB

nên MF/AB=CM/CB=1/2

=>MF=1/2BA=EB

mà MF//EB

nên MFEB là hbh

b: AEMF là hcn

=>AM cắt EF tại trung điểm của mỗi đường

=>O là trung điểm của EF

=>OE=OF

10 tháng 12 2023

ai trả lời cho mình đc k mình đang cânf gấp

 

a: Xét tứ giác AEMF có 

\(\widehat{AEM}=\widehat{AFM}=\widehat{FAE}=90^0\)

Do đó: AEMF là hình chữ nhật

b: Xét ΔABC có 

M là trung điểm của BC

ME//AC

Do đó: E là trung điểm của AB

=>AE=3cm

Xét ΔABC có

M là trung điểm của BC

MF//AB

Do đó: F là trung điểm của AC

=>AF=4cm

\(S_{AEMF}=AE\cdot AF=3\cdot4=12\left(cm^2\right)\)

c: Xét tứ giác ABNC có

M là trung điểm của BC

M là trung điểm của AN

Do đó: ABNC là hình bình hành

mà \(\widehat{BAC}=90^0\)

nên ABNC là hình chữ nhật

7 tháng 1 2022

Cảm ơn bạn nha^^

a: \(BC=\sqrt{8^2+6^2}=10\left(cm\right)\)

AM=BC/2=5cm

b: Xét tứ giác AEMF có

góc AEM=góc AFM=góc FAE=90 độ

nen AEMF là hình chữ nhật

c: Xét tứ giác AMBN có

F là trung điểm chung của AB và MN

MA=MB

Do đó: AMBN là hình thoi

20 tháng 12 2020

a) Xét tứ giác AEMF có 

\(\widehat{EAF}=90^0\)(\(\widehat{BAC}=90^0\), E∈AB, F∈AC)

\(\widehat{AEM}=90^0\)(ME⊥AB)

\(\widehat{AFM}=90^0\)(MF⊥AC)

Do đó: AEMF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được: 

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=5^2+12^2=169\)

\(\Leftrightarrow BC=\sqrt{169}=13cm\)

Ta có: ΔABC vuông tại A(gt)

mà AM là đường trung tuyến ứng với cạnh huyền BC(M là trung điểm của BC)

nên \(AM=\dfrac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

hay \(AM=\dfrac{13}{2}=6.5cm\)

Ta có: AEMF là hình chữ nhật(cmt)

nên AM=EF(Hai đường chéo của hình chữ nhật AEMF)

mà AM=6,5cm

nên EF=6,5cm

Vậy: EF=6,5cm

c) Xét ΔABC có

M là trung điểm của BC(gt)

ME//AC(ME//AF, C∈AF)

Do đó: E là trung điểm của AB(Định lí 1 đường trung bình của tam giác)

\(AE=\dfrac{AB}{2}=\dfrac{5}{2}=2.5cm\)

Xét ΔABC có 

M là trung điểm của BC(gt)

MF//AB(MF//AE, B∈AE)

Do đó: F là trung điểm của AC(Định lí 1 đường trung bình của tam giác)

\(AF=\dfrac{AC}{2}=\dfrac{12}{2}=6cm\)

Ta có: AEMF là hình chữ nhật(cmt)

nên \(S_{AEMF}=AE\cdot AF=2.5\cdot6=15cm^2\)