Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ I hạ IG; IK lần lượt vuông góc với AC; AB
Do BI; CI là phân giác góc và C nên IH=IG=IK
=> HC=GC=3 (cm) ; HB=KB=2 (cm)
Dễ dàng chứng minh 2 tam giác AKI và AGI là 2 tam giác vuông cân
=> IG=AG; IK=AK. Mà IH=IK=IG => AG=AK=IH=1 (cm)
=> CABC= AK+KB+HB+HC+AG+GC=1+2+2+3+1+3=12 (cm).
A B C H I K G
Từ I hạ IG; IK lần lượt vuông góc với AC; AB
Do BI; CI là phân giác góc và C nên IH=IG=IK
=> HC=GC=3 (cm) ; HB=KB=2 (cm)
Dễ dàng chứng minh 2 tam giác AKI và AGI là 2 tam giác vuông cân
=> IG=AG; IK=AK. Mà IH=IK=IG => AG=AK=IH=1 (cm)
=> CABC= AK+KB+HB+HC+AG+GC=1+2+2+3+1+3=12 (cm).
hic giúp mk đi xin lun đó !!!! zời ơi mấy người hok giỏi trong olm đâu zùi chán vãi !!!!
5665876978
Em tự vẽ hình nhé!
Kẻ \(ID\perp AC,IE\perp AB\). Theo tính chất tia phân giác: \(IE=ID=IH=1\left(cm\right)\)
Ta chứng minh được \(BE=BH=2\left(cm\right),CD=CH=3\left(cm\right)\)
AI là tia phân giác của \(\widehat{A}\) mà \(\widehat{A}=90^o\) nên \(\widehat{IAD}=\widehat{IAE}=45^o\)
Suy ra \(AD=ID=1\left(cm\right)\), \(AE=IE=1\left(cm\right)\). Từ đó, chu vi tam giác ABC là: \(1+2+2+3+3+1=12\left(cm\right)\)