Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ABCD có
M là trung điểm chung của AC và BD
Do đó: ABCD là hình bình hành
=>CD//AB và CD=AB
=>CD vuông góc với CA
CD=AB
mà BC>AB
nên BC>CD
b: góc ABM=góc CDB
mà góc CDB>góc MBC
nên góc ABM>góc MBC
a) Xét \(\Delta ABC\) vuông tại A
\(Bc^2=Ab^2+AC^2\Rightarrow AB^2=BC^2-AC^2=10^2-8^2\text{}\Rightarrow AB=6cm\)
b) Xét \(\Delta ABM\) và \(\Delta CDM\) có:
\(AM=CM;\widehat{AMB}=\widehat{CMD};BM=DM\)
\(\Rightarrow\) \(\Delta ABM\) = \(\Delta CDM\)
\(\Rightarrow\) \(\widehat{BAM}=\widehat{DCM}=90^ohayAC\perp CD\)
c) Có : BC + DC > BD
mà BM = 2 BD ; DC = AB
\(\Rightarrow\) DC + BC > 2BM
a, \(\Delta BAM=\Delta DCM\left(c.g.c\right)\Rightarrow\hept{\begin{cases}AB=CD\\\widehat{BAM}=\widehat{DCM}\end{cases}}\)
Mà \(\widehat{BAM}=90^0\left(\widehat{BAC}=90^0\right)\Rightarrow\widehat{DCM}=90^0\Rightarrow AC\perp CD\)
b, MB = MD (gt) và \(M\in BD\Rightarrow\) M là trung điểm của BD \(\Rightarrow BD=2BM\)
Áp dụng bất đẳng thức tam giác vào \(\Delta BCD:CD+BC>BD\)
\(\Rightarrow AB+BC>2BM\)(vì AB = CD, BD = 2BM)
c, Tam giác ABC vuông tại A \(\Rightarrow AB< BC\) (trong tam giác vuông, cạnh huyền lớn nhất)
\(\Rightarrow CD< BC\Rightarrow\widehat{CBD}< \widehat{D}\) (quan hệ giữa góc và cạnh đối diên trong tam giác BCD)
\(\Delta BAM=\Delta DCM\left(cmt\right)\Rightarrow\widehat{ABM}=\widehat{D}\)
Do đó: \(\widehat{CBD}< \widehat{ABM}\Rightarrow\widehat{CBM}< \widehat{ABM}\)
Chúc bạn học tốt.
(tự vẽ hình )
câu 4:
a) có AB2 + AC2 = 225
BC2 = 225
Pytago đảo => \(\Delta ABC\)vuông tại A
b) Xét \(\Delta MAB\)và \(\Delta MDC\)
MA = MD (gt)
BM = BC ( do M là trung điểm của BC )
\(\widehat{AMB}=\widehat{CMD}\)( hai góc đối đỉnh )
=> \(\Delta MAB\)= \(\Delta MDC\) (cgc)
c) vì \(\Delta MAB\)= \(\Delta MDC\)
=> \(\hept{\begin{cases}AB=DC\\\widehat{MAB}=\widehat{MDC}\end{cases}}\)
=> AB// DC
lại có AB \(\perp\)AC => DC \(\perp\)AC => \(\Delta KCD\)vuông tại C
Xét \(\Delta\) vuông ABK và \(\Delta\)vuông KCD:
AB =CD (cmt)
AK = KC ( do k là trung điểm của AC )
=> \(\Delta\)vuông AKB = \(\Delta\)vuông CKD (cc)
=> KB = KD
d. do KB = KD => \(\Delta KBD\)cân tại K
=> \(\widehat{KBD}=\widehat{KDB}\)(1)
có \(\Delta ADC\)vuông tại C => \(AD=\sqrt{AC^2+DC^2}=15\)
=> MD = 7.5
mà MB = 7.5
=> MB = MD
=> \(\Delta MBD\)cân tại M
=> \(\widehat{MBD}=\widehat{MDB}\)(2)
Từ (1) và (2) => \(\widehat{KBD}-\widehat{MBD}=\widehat{KDB}-\widehat{MDB}\)hay \(\widehat{KBM}=\widehat{KDM}\)
Xét \(\Delta KBI\)và \(\Delta KDN\)có:
\(\widehat{KBI}=\widehat{KDN}\)(cmt)
\(\widehat{KBD}\)chung
KD =KB (cmt)
=> \(\Delta KBI\)= \(\Delta KDN\)(gcg)
=> KN =KI
=. đpcm
câu 5:
a) Xét \(\Delta ABM\)và \(\Delta MDC\):
MA=MD(gt)
MB=MC (M là trung điểm của BC)
\(\widehat{BMA}=\widehat{DMC}\)( đối đỉnh )
=> \(\Delta BMA=\Delta CMD\)(cgc)
b) Xét \(\Delta\)vuông ABC
có AM là đường trung tuyến của tam giác
=> \(AM=\frac{1}{2}BC\)mà \(BM=MC=\frac{1}{2}BC\)(do M là trung điểm của BC )
=> AM = BM = MC
có MA =MD => AM = MD =MB =MC
=> BM +MC = AM +MD hay BC =AD
Xét \(\Delta BAC\)và \(\Delta DCA\)
AB =DC
AC chung
BC =DC
=> \(\Delta BAC\)= \(\Delta DCA\)(ccc)
c. Xét \(\Delta ABM\)
BM=AM
\(\widehat{ABM}\)= 600
=> đpcm
https://olm.vn/hoi-dap/detail/67802117915.html
Bạn vào link này xem nhé
Học tốt!!!!!!!
M A B C D
a) Xét tam giác ABM và CDM có :
MA = MC ( gt )
MB = MD ( gt )
Góc AMB = góc CMD ( đối đỉnh )
=> tam giác ABM = tam giác CDM ( c - g - c ) => đpcm
b) Tam giác ABM = tam giác CDM
=> góc BAM = góc DCM
=> AB // CD ( so le )
c) Ta có :
BE =AB
=> B là trung điẻm AE
M là trung điểm AC
=> BM là đường trung bình tam giác ACE
=> BM = 1/2 .EC ( đpcm )
Đạt ( Quỳnh ) tự vẽ hình nhé !
a) Vì M là trung điểm của Ac
\(\Rightarrow AM=MC=\frac{1}{2}AC\)
Xét \(\Delta ABM\) và \(\Delta CDM\) có :
\(AM=MC\)
\(\widehat{AMB}=\widehat{CMD}\left(đđ\right)\)
\(BM=DM\left(gt\right)\)
Suy ra : \(\Delta ABM=\Delta CDM\left(c.g.c\right)\)
\(\Rightarrow\widehat{BAM}=\widehat{DCM}=90^o\)
\(\Rightarrow CD\perp AC\)
Vì \(\Delta ABC\) vuông tại A \(\Rightarrow\) BC là cạnh huyền của tam giác
\(\Rightarrow\) BC > AB
Mà \(AB=CD\left(\Delta ABM=\Delta CDM\right)\)
Suy ra : \(BC>CD\)
b ) Tam giác BCD có :
\(BC>CD\Rightarrow\widehat{CDM}>\widehat{CBD}\) ( góc đối diện với cạnh lớn hơn là góc lớn hơn )
Mà \(\widehat{CDM}=\widehat{ABM}\left(\Delta ABM=\Delta CDM\right)\)
Suy ra : \(\widehat{ABM}>\widehat{CBD}\) hay \(\widehat{ABM}>\widehat{MBC}\left(đpcm\right)\)
Thôi tiện Nhi vẽ hình luôn xD
A B C M D