Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tg AHC vuông tại H có :\(\widehat{HAC}+\widehat{C}=\widehat{AHC}=90^o\)
\(\widehat{HAC}+\widehat{HAB}=\widehat{BAC}=90^o\)
\(\Rightarrow\widehat{HAB}=\widehat{C}\)
- Xét tg AHB và tg CHA có :
\(\widehat{AHB}=\widehat{AHC}=90^o\)
\(\widehat{HAB}=\widehat{C}\left(cmt\right)\)
\(\Rightarrow\Delta AHB~\Delta CHA\left(g.g\right)\)
(Dấu đồng dạng bị ngược, khi làm vào bài bạn quay ngược lại nha)
b) Xét tg BAH vuông tại H có :
AB2=BH2+AH2 (Pytago)
=>152=BH2+122
=>225=BH2+144
=>BH2=81
=>BH=9cm
- Do tg AHB đồng dạng tg CHA (cmt)
\(\Rightarrow\frac{HB}{HA}=\frac{HA}{HC}\)
\(\Rightarrow\frac{9}{12}=\frac{12}{HC}\)
\(\Rightarrow HC=16cm\)
- Có : HB+HC=BC
=> BC=9+16=25
- Xét tg ABC vuông tại A với định lí Pytago, ta tính được \(AC=20cm\)
#H
(Ý c,d để suy nghĩ tiếp)
A B C H 15 12 M
a, Xét tam giác AHB và tam giác CAB ta có :
^AHB = ^A = 900
^B _ chung
Vậy tam giác AHB ~ tam giác CAB ( g.g ) (1)
Xét tam giác AHC và tam giác BAC ta có :
^AHC = ^A = 900
^C _ chung
Vậy tam giác AHC ~ tam giác BAC ( g.g ) (2)
Từ (1) và (2) suy ra tam giác AHB ~ tam giác AHC
b, Áp dụng định lí Py ta go cho tam giác AHB ta có :
\(AB^2=AH^2+BH^2\Rightarrow BH^2=AB^2-AH^2\)
\(\Rightarrow BH^2=225-144=81\Rightarrow BH=9\)cm
Ta có tam giác AHB ~ tam giác AHC ( cma )
\(\Rightarrow\frac{AH}{AH}=\frac{HB}{HC}\Rightarrow1=\frac{9}{HC}\Rightarrow HC=9\)cm
Áp dụng Py ta go cho tam giác AHC ta có :
\(AC^2=AH^2+HC^2\Rightarrow AC^2=144+81=225\Rightarrow AC=15\)cm
c, Vì AM là tia phân giác ^BAC nên \(\frac{AB}{AC}=\frac{BM}{MC}\)
mà \(BM=BC-MC=18-MC\)
do \(BC=BH+HC=9+9=18\)cm
\(\Rightarrow\frac{AB}{AC}=\frac{18-MC}{MC}\Rightarrow18-MC=MC\Rightarrow MC=9\)cm
\(\Rightarrow BM=BC-MC=18-9=9\)
( hoặc có thể làm thế này * AM là trung tuyến nên MC = BM = 18/2 = 9 cm )
\(\Rightarrow BM=BH+HM\Rightarrow HM=BM-BH\)
thay số vào, mà bài mình sai ở đâu rồi, xem lại hộ mình nhé, mệt quá, cách làm tương tự như vậy
bì BH không bằng BM nhé do BH = 9 ; BM = 9 xem lại hộ mình nhé
tự vẽ hình nhé
a, ta có <HBA+<BAH =90
<BAH + <HAC=90
\(\Rightarrow\) <HBA=<HAC
xét \(\Delta AHB\) và \(\Delta CHA\)
<HBA=<HAC
<BHA=<CHA=90
\(\Rightarrow\Delta AHB\) ~\(\Delta CHA\)
b, Xét \(\Delta ABH\) vg tại H, áp dụng đl Py ta go ta đc
\(AH^2+BH^2=AB^2\\ \Rightarrow BH=9\)
Ta có \(\Delta ABH\) ~ \(\Delta CAH\)
\(\dfrac{\Rightarrow BH}{AH}=\dfrac{AH}{CH}\Rightarrow AH^2=BH\cdot CH\)
\(\Rightarrow CH=16\)
Xét \(\Delta AHC\) cg tại H, áp dụng ĐL py ta go ta đc
\(AH^2+CH^2=AC^2\Rightarrow AC=20\)
c, xét \(\Delta ABC\) vg tại A áp dụng đl Py ta go ta đc
\(AB^2+AC^2=BC^2\Rightarrow BC=25\)
Ta có AM là tia pg của <BAC
\(\dfrac{MB}{AB}=\dfrac{MC}{AC}\Rightarrow\dfrac{MB+MC}{AB+AC}=\dfrac{BC}{AB+AC}=\dfrac{5}{7}\\ \Rightarrow MB=10,7\)
a) Xét ΔAHB vuông tại H và ΔCHA vuông tại H có
\(\widehat{HAB}=\widehat{HCA}\left(=90^0-\widehat{CAH}\right)\)
Do đó: ΔAHB\(\sim\)ΔCHA(g-g)
A H C B
a.
* Xét 2 ΔAHB và ΔCAB, ta có:
gócH = gócA = 90 độ
gócB chung
⇒ΔAHB ∼ ΔCAB (g.g) (1)
* Xét 2 ΔCHA và ΔCAB, ta có:
gócH = gócA = 90 dộ
gócC chung
⇒ΔCHA ∼ ΔCAB (g.g) (2)
Từ (1),(2) ⇒ΔAHB ∼ ΔCHA (t/c bắc cầu ΔCAB)