Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
A C B D Theo tính chất đường phân giác áp dụng cho \(\Delta ABC\) có BD là phân giác góc ABC \(\Rightarrow\frac{AB}{BC}=\frac{AD}{DC}=\frac{1}{2}\)
\(\Delta ABC\) vuông tại A\(\Rightarrow\tan B=\frac{AB}{BC}=\frac{1}{2}\Rightarrow\widehat{B}\approx27\)
b, O C A B
Thấy \(\widehat{ACB}\) nội tiếp \(\left(O\right)\) chắn cung AB nhỏ
\(\Rightarrow\widehat{ACB}=\frac{1}{2}sđ\overline{AB}\left(1\right)\)
Thấy \(\widehat{AOB}\) chắn cung AB nhỏ \(\Rightarrow\widehat{AOB}=sđ\overline{AB}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\widehat{AOB}=2\widehat{ACB}=2\left(180^o-70^o-60^o\right)=2.50^o=100^o\)
A B C D
Ta có \(\tan50=\frac{AC}{AB}\Rightarrow AB=\frac{AC}{\tan50}\approx12.5\left(cm\right)\)
Theo định lí Pitago ta có \(BC=\sqrt{AB^2+AC^2}=\sqrt{15^2+12,5^2}\approx19,6\left(cm\right)\)
Có \(\widehat{C}=180^0-\widehat{A}-\widehat{B}=40^0\)
Vì CD là phân giác trong của góc C \(\Rightarrow\widehat{ACD}=20^0\)
\(\Rightarrow CD=\frac{AC}{\cos20}\approx16\left(cm\right)\)