\(\sqrt{10}\)cm. Tính...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Áp dụng định lí Pytago vào ΔABD vuông tại A, ta được:

\(BD^2=AB^2+AD^2\)

\(\Leftrightarrow AB^2=BD^2-AD^2=\left(4\sqrt{10}\right)^2-4^2=144\)

hay AB=12(cm)

Xét ΔABD vuông tại A có

\(\tan\widehat{ABD}=\dfrac{AD}{AB}=\dfrac{4}{12}=\dfrac{1}{3}\)

hay \(\widehat{ABD}\simeq18^026'\)

mà \(\widehat{ABC}=2\cdot\widehat{ABD}\)(BD là tia phân giác của \(\widehat{ABC}\))

nên \(\widehat{ABC}\simeq36^052'\)

Xét ΔABC vuông tại A có

\(AC=AB\cdot\tan\widehat{ABC}\)

\(\Leftrightarrow AC=12\cdot\tan36^052'\simeq9\)(cm)

Ta có: ΔABC vuông tại A(gt)

nên \(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{12\cdot9}{2}=\dfrac{108}{2}=54\left(cm^2\right)\)

26 tháng 6 2021

Đặt \(CD=x,BC=y\left(x,y>0\right)\)

Ta có \(AB=\sqrt{BD^2-AD^2}=12\)

Ta có hệ phương trình: \(\hept{\begin{cases}\frac{x}{y}=\frac{AD}{AB}=\frac{4}{12}=\frac{1}{3}\\12^2+\left(4+x\right)^2=y^2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=3x\\144+\left(4+x\right)^2=\left(3x\right)^2\end{cases}}\Leftrightarrow\hept{\begin{cases}y=3x\\x=5\left(h\right)x=-4\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=5\\y=15\end{cases}}\)(Vì \(x,y>0\))

Vậy \(S_{ABC}=\frac{AB.\left(AD+CD\right)}{2}=\frac{12.\left(4+5\right)}{2}=54.\)

15 tháng 12 2017

Theo t/c đường phân giác: AD/AB = ID/IB = 1/2 --> ID = 1/2AB 
Mà AD² + AB² = BD² = 15².5 hay 1/4AB² + AB² = 15².5 --> AB = 30 --> AD = 15 
Lại theo t/c đường phân giác: AD/DC = AB/BC --> DC/BC = AD/AB = 1/2 
--> BC = 2DC 
Theo đ/l Pytago AB² + AC² = BC² hay 30² + (DC + 15)² = 4DC² 
<=> DC² - 10DC - 375= 0 --> DC = 25 (loại nghiệm -15) 
--> AC = AD + DC = 15 + 25 = 40 
--> S(ABC) = 1/2AB.AC = 35 cm²

29 tháng 9 2019

Đọc dòng đầu thấy sai sai bạn ạ

AD/AB=ID/IB=1/2 =>ID=1/2 IB chứ ko phải AB

AH
Akai Haruma
Giáo viên
31 tháng 5 2024

Lời giải:

Theo tính chất tia phân giác:

$\frac{AB}{BC}=\frac{AD}{DC}=\frac{4\sqrt{10}}{5\sqrt{10}}=\frac{4}{5}$

$AC=4\sqrt{10}+5\sqrt{10}=9\sqrt{10}$

Áp dụng định lý Viet:

$BC^2=AB^2+AC^2$

$\Leftrightarrow (\frac{5}{4}AB)^2=AB^2+(9\sqrt{10})^2$

$\Leftrightarrow AB^2=1440$

$BD=\sqrt{AB^2+AD^2}=\sqrt{1440+(4\sqrt{10})^2}=\sqrt{1440+160}=40$ (cm)

AH
Akai Haruma
Giáo viên
31 tháng 5 2024

Hình vẽ:

5 tháng 8 2017

=) Áp dụng liên tục py-ta-go và định lí đường phân giác quá dễ đó bạn :V
\(\frac{AD}{AB}=\frac{ID}{IB}=\frac{1}{2}vs.AD^2+AB^2=\left(6\sqrt{3}+3\sqrt{3}\right)^2=...\\ \)
Tìm đ.c AD và AB 
Làm tươn tự trên đối với tg ABC
\(\frac{AD}{DC}=\frac{AB}{BC}vs.AB^2+\left(AD+DC\right)^2=BC^2.\\ \)
\(Chỉ-cần-giải-hệ-là-ra-....\\ \)

6 tháng 8 2017

vs là gì v bạn?

23 tháng 6 2017

a, \(vì\)AD là phân giác suy ra góc BAD =góc DAC =45 ĐỘ

cos45 độ = AD/AB =4 /AB =1/ căn 2 suy ra AB =4 NHÂN CĂN 2

TH TỰ dùng sin 45 độ =dc/ac =5/ad =1/căn 2 suy ra AC =5 CĂN 2  ÁP DỤNG PITA GO TÌM RA CẠNH bc 

b,

23 tháng 6 2017

sao lại \(\frac{1}{\sqrt{2}}\) ?

Áp dụng định lí Pytago vào ΔABD vuông tại A, ta được:

\(BD^2=AD^2+AB^2\)

\(\Leftrightarrow AB^2=BD^2-AD^2=\left(\sqrt{10}\right)^2-1^2=9\)

hay AB=3(cm)

Xét ΔABD vuông tại A có

\(\sin\widehat{ABD}=\dfrac{AD}{BD}=\dfrac{1}{\sqrt{10}}\)

nên \(\widehat{ABD}\simeq18^026'\)

mà \(\widehat{ABC}=2\cdot\widehat{ABD}\)(BD là tia phân giác của \(\widehat{ABC}\))

nên \(\widehat{ABC}\simeq2\cdot18^026'=36^052'\)

Xét ΔABC vuông tại A có 

\(AB=BC\cdot\cos\widehat{ABC}\)

\(\Leftrightarrow BC=\dfrac{AB}{\cos\widehat{ABC}}=\dfrac{3}{\cos36^052'}\)

hay \(BC\simeq3.75cm\)

Vậy: \(BC\simeq3.75cm\)

27 tháng 7 2017

Cho tam giác ABC vuông tại A,phân giác AD

a,CM 2AD =1AB +1AC 

b, Gọi I là giao điểm các đường phân giác của  tam giác ABC, biết IB=5,IC=10. Tính diện tích tam giác ABC

28 tháng 7 2017

a) Đặt AB = c; AC = b; AD = d. 
Áp dụng công thức tính diện tích tam giác bằng ½ tích hai cạnh nhân sin góc xen giữa ta có: 
S ABD = ½.AB.AD.sin BAD = ½.cd.sin 45º = ½cd.1/√2 
Tương tự: S ACD = ½bd.1/√2 
=> S ABC = S ABD + S ACD = ½cd.1/√2 + ½bd.1/√2 = ½d(b + c)/√2 
mà S ABC = ½bc 
=> ½d(b + c)/√2 = ½bc 
=> (b + c)/bc = √2/d 
<=> 1/b + 1/c = √2/d 

b,Kẻ CH ⊥ BI và CH cắt BA tại K. Tam giác BCK có BH vừa là phân giác vừa là đường cao Tam giác BCK cân tại B => BH là đường trung tuyến => CH = KH. và KC = 2HC. 

Đặt BC = x Ta có: AD = BK - AB = BC - AB = x - AB
Gọi giao điểm của AC và BH là E. 
Xét tam giác AEB và tam giác HEC có góc EAB = góc EHC = 90độ và góc AEB = góc HEC (đối đỉnh) 
tam giác AEB ~ tam giác HEC(g.g) 
Góc HCE = góc ABE. 
Góc HCE = góc ABC/2 (1) 
Mà Góc ECI = gócACB/2 (2) 
Từ (1) và (2) Góc ICH = Góc HCE + Góc ECI = (gócABC + góc ACB)/2 = 90độ/2 = 45độ. 
Xét tam giác HIC có góc IHC = 90độ và Góc ICH = 45 độ (góc còn lại chắc chắn = 45 độ) 
tam giác HIC vuông cân tại H => HI = HC. 
Áp dụng đinh lý Py-ta-go cho tam giác này ta được: 2HI² = IC² 
√2.IH = IC hay CH = IC/√2. 
CH =HI=√10 /√2

Suy ra BH=HI+IB=√10 /√2+√5

=>BC=√((√10 /√2+√5)²+(√10 /√2)²)

 KC = 2CH = 2.√10/√2

Xét tam giác: AKC có góc KAC = 90độ và Áp dụng định lý Py-ta-go ta có: KC² = AK² + AC² 
AC² = KC² - AK² hay AC² = (2.√10/√2)² - (x - AB)² (3) 

Tương tự đối với tam giác ABC ta có: AC² = BC² - AB² AC² = x² - AB² (4) 

Từ (3) và (4) suy ra (2.√10/√2)² - (x - AB)² = x² - AB² 

20 - (x² - 2ABx +AB²) = x² - AB²

=>10=x(x-AB)

sau đó tính AB rồi tính AC And S ABC

xét tam giác ABD có góc BAD=90 độ
= BD^2=AB^2+AD^2
=>AB^2=BD^2-AD^2=10-1=9
=> AB=3 cm
có AC=AD+DC=1+√10 cm
tam giác ABC vuông tại A
=>AB^2+AC^2=BC^2
=>BC^2=9+1+2√10+10=20+2√10
=>BC=√(20+2√10)

9 tháng 6 2019

DC =\(\sqrt{10}\)tại sao