K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2020

BE là ph/giác nên \(\frac{AE}{EC}=\frac{AB}{AC}\left(1\right)\)

Dễ dàng cm : \(\Delta ADB\sim\Delta CAB\Rightarrow\frac{AB}{BC}=\frac{DB}{AB}\left(2\right)\)

BE là tia ph/giác nên \(\frac{DB}{AB}=\frac{DF}{FA}\left(3\right)\)

(1),(2) và (3) suy ra ĐPCM

1 tháng 3 2020

ôi trời ơi, ko cảm ơn 1 tiếng lun kìa

15 tháng 5 2017

a) Xét tam giác ADB và tam giác BAC, ta có:
   Góc B chung
   Góc D = góc A (=900)
=> Tam giác ADB đồng dạng tam giác CAB
b) Ko biết chứng minh cái gì
c) Có tam giác ADB đồng dạng tam giác CAB (cmt)
\(\Rightarrow\frac{BD}{AB}=\frac{AB}{BC}\left(1\right)\)
Xét tam giác ABD, có BF là tia phân giác
\(\Rightarrow\frac{AF}{AB}=\frac{FD}{BD}\Rightarrow\frac{BD}{AB}=\frac{DF}{FA}\left(2\right)\)
Xét tam giác ABD, có BD là tia phân giác
\(\Rightarrow\frac{AE}{AB}=\frac{EC}{BC}\Rightarrow\frac{AB}{AE}=\frac{BC}{EC}\Rightarrow\frac{AB}{BC}=\frac{AE}{EC}\left(3\right)\)
Từ (1); (2) và (3)
\(\Rightarrow\frac{DF}{FA}=\frac{AE}{EC}\)

1 tháng 8 2018

Theo t/c đường phân giác, ta được:  \(\frac{BD}{BA}=\frac{DF}{AF},\frac{BA}{BC}=\frac{EA}{EC}\)

Chứng minh được \(\Delta BAC\infty\Delta BDA\left(g.g\right)\Rightarrow\frac{BA}{BC}=\frac{BD}{BA}\)

Vậy \(\frac{DF}{FA}=\frac{AE}{EC}\)

Bạn nên suy nghĩ một lúc nếu ko làm được thì mới hỏi. Chúc bạn học tốt.

10 tháng 4 2017

 bài 2 bạn tự vẽ hình nha

xét tam giác vuông ABC và tam giác vuông DBA co chung goc BAC 

==> tam giác ABC đồng dạng với tam giác DBA 

==> AB/BC=BD/AB (1)

xét tam giác DBA có BF là phân giác ==> BD/AB=DF/AF(2)

xét tam giác vuông BAC có BE là phân giác ==> AB/BC=AE/EC (3)

từ (1) (2) (3) ta có DF/FA =AE/EC (vì cùng bằng AB/BC )

26 tháng 3 2017

Tk mình đi mọi người mình bị âm nè!

Ai tk mình mình tk lại cho