Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho tam giác ABC vuông tại A, AC>AB, vẽ đường phân giác AD, đường thẳng vuông góc với BC tại D cắt AC ở E. CMR: DB=DE
Mọi người ơi hãy trả lời giùm cho câu hỏi quan trọng cho kỳ thi nhé
.
Bạn tự vẽ hình nha
a.
Tam giác ABD vuông tại A có: ABD + ADB = 90
Tam giác CED vuông tại C có: CED + EDC = 90
mà ADB = EDC (2 góc đối đỉnh)
=> ABD = CED
mà ABD = CBD (BD là tia phân giác của ABC)
=> CED = CBD
=> Tam giác BEC cân tại C
b.
Tam giác ABC vuông tại A có:
BC > AB (quan hệ giữa góc và cạnh đối diện trong tam giác vuông)
mà BC = EC (tam giác BEC cân tại C)
=> EC > AB
=> DE > DB (quan hệ giữa đường xiên và hình chiếu)
c.
CA là đường cao của tam giác MBC
BD là đường cao của tam giác MBC
=> D là trực tâm của tam giác MBC
=> MD là đường cao của tam giác MBC
hay MD _I_ BC
Chúc bạn học tốt
Bài làm
a) Xét tam giác ABC cân tại A
=> ^B = ^C
Mà ^A + ^B + ^C = 180°
=> ^B + ^C = 180° - ^A
=> ^B = ^C = ( 180° - 50° )/2
=> ^B = ^C = 130°/2 = 65°
b) Ta có: ^B = ^ACB ( Tam giác ABC cân )
Mà ^ACB = ^ECN ( hai góc đối )
=> ^B = ^ECN
Xét tam giác MBD và tam giác NCE có:
^MDB = ^NEC ( = 90° )
BD = CE ( gt )
^B = ^ECN ( cmt )
=> ∆MBD = ∆NCE ( g.c.g )
=> MD = NE
Ta có: MD vuông góc với BE
NE vuông góc với BE
=> MD // NE
c) Vì MD // NE
=> ^DMI = ^ENI ( so le trong )
Xét tam giác DMI và tam giác ENI có:
^DMI = ^ENI ( cmt )
MD = EN ( cmt )
^MDI = ^NEI ( = 90° )
=> ∆DMI = ∆ENI ( g.c.g )
=> DI = IE ( hai cạnh tương ứng )
=> I là trung điểm của DE ( đpcm )