K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 1 2018

cho tam giác ABC vuông tại A, AC>AB, vẽ đường phân giác AD, đường thẳng vuông góc với BC tại D cắt AC ở E. CMR: DB=DE

19 tháng 11 2016

1/ Ta có hình vẽ:

a/ Xét tam giác OAD và tam giác OBD có:

OD: cạnh chung

\(\widehat{AOD}\)=\(\widehat{BOD}\) (GT)

OA = OB (GT)

Vậy tam giác OAD = tam giác OBD (c.g.c)

=> DA = DB (2 cạnh tương ứng)

b/ Ta có: tam giác OAD = tam giác OBD (câu a)

=> \(\widehat{ODA}\)=\(\widehat{ODB}\) (2 góc tương ứng)

\(\widehat{ODA}\) + \(\widehat{ODB}\) = 1800 (kề bù)

=> \(\widehat{ODA}\)=\(\widehat{ODB}\) = \(\frac{1}{2}\)1800 = 900

=> OD \(\perp\)AB

Vậy OD vuông góc với AB

30 tháng 10 2016

Ta có hình vẽ:

A B C D H E d

Vì BD là phân giác của ABC nên \(ABD=CBD=\frac{ABC}{2}\)

Vì ABC vuông góc tại A nên góc A = 90o

Xét Δ ABC có: ABC + ACB = 90o (tính chất của Δ vuông)

=> ABC = 90o - ACB

=> \(\frac{ABC}{2}=\frac{90^o-ACB}{2}\)

=> CBD = 45o - \(\frac{ACB}{2}\)

\(CH\perp DE\) nên CHD = 90o

Xét Δ BHC có: HBC + BCH = 90o (tính chất của Δ vuông)

=> 45o - \(\frac{ACB}{2}\) + BCH = 90o

=> BCH - \(\frac{ACB}{2}\) = 45o

=> BCH - \(\frac{ACB}{2}\) = \(\frac{BCE}{2}\) (vì BCE = 90o)

=> BCH \(=\frac{BCE+ACB}{2}=\frac{2.ACB+DCE}{2}=ACB+\frac{DCE}{2}\)

=> BCH - ACB = \(\frac{DCE}{2}\)

=> \(DCH=\frac{DCE}{2}\)

=> CH là tia phân giác của góc DCE (đpcm)

1 tháng 11 2016

bn ơi, bn k trả lời sớm, thầy mik chữa bài và mik nộp bài mất tiêu r khocroi

24 tháng 12 2018

Mọi người ơi hãy trả lời giùm cho câu hỏi quan trọng cho kỳ thi nhé

.