K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2023

a: Xét tứ giác ABMD có

O là trung điểm chung của AM và BD

=>ABMD là hình bình hành

b: ta có:ABMD là hình bình hành

=>AD//MB và AD=MB

Ta có: AD//MB

M\(\in\)BC

Do đó: AD//CM

Ta có: AD=MB

MC=MB

Do đó: AD=MC

Ta có: ΔABC vuông tại A

mà AM là đường trung tuyến

nên \(MA=MB=MC=\dfrac{BC}{2}\)

Xét tứ giác AMCD có

AD//CM

AD=CM

Do đó:AMCD là hình bình hành

Hình bình hành AMCD có MA=MC

nên AMCD là hình thoi

c: Ta có: AMCD là hình thoi

=>AC vuông góc với DM tại trung điểm của mỗi đường

=>AC\(\perp\)DM tại K và K là trung điểm chung của AC và DM

Xét ΔABC có

N,K lần lượt là trung điểm của AB,AC

=>NK là đường trung bình của ΔABC

=>NK//BC 

=>NK//MH

Xét ΔABC có

M,N lần lượt là trung điểm của BC,BA

=>MN là đường trung bình của ΔABC

=>MN//AC và \(MN=\dfrac{AC}{2}\)

Ta có: ΔHAC vuông tại H

mà HK là đường trung tuyến

nên \(HK=\dfrac{AC}{2}\)

=>MN=HK

Xét tứ giác MHNK có MH//NK và MN=HK

nên MHNK là hình thang cân

d: 

Ta có: ΔHAC vuông tại H

mà HK là đường trung tuyến

nên \(KA=KH=KC=\dfrac{AC}{2}\)

Ta có: ΔHAB vuông tại H

mà HN là đường trung tuyến

nên \(HN=AN=NB=\dfrac{AB}{2}\)

Xét ΔKAN và ΔKHN có

KA=KH

AN=HN

KN chung

Do đó: ΔKAN=ΔKHN

=>\(\widehat{KAN}=\widehat{KHN}=90^0\)

Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.a. Chứng minh tứ giác ABDC là hình chữ nhật.b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.c. Chứng minh tứ giác AEKC là hình bình hành.d. Tìm điều kiện để hình thoi AKBE là hình vuông.Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D...
Đọc tiếp

Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.

a. Chứng minh tứ giác ABDC là hình chữ nhật.

b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.

c. Chứng minh tứ giác AEKC là hình bình hành.

d. Tìm điều kiện để hình thoi AKBE là hình vuông.

Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D là trung điểm AB, lấy điểm E đối xứng với M qua D.

a. Chứng minh: M và E đối xứng nhau qua AB.

b. Chứng minh: AMBE là hình thoi.

c. Kẻ HK vuông góc với AB tại K, HI vuông góc với AC tại I. Chứng minh IK vuông góc với AM

Bài 3: Cho tam giác ABC có ba góc nhọn, trực tâm H. Đường thẳng vuông góc với AB kẻ từ B cắt từ đường thẳng vuông góc từ AC kẻ từ C tại D.

a. Chứng minh tứ giác BHCD là hình bình hành. 

b. Gọi M là trung điểm BC, O là trung điểm AD. Chứng minh 2OM = AH

1

a)Ta có 

BK=KC (GT)

AK=KD( Đối xứng)

suy ra tứ giác ABDC là hình bình hành (1)

mà góc A = 90 độ (2)

từ 1 và 2 suy ra tứ giác ABDC là hình chữ nhật

b) ta có

BI=IA

EI=IK

suy ra tứ giác AKBE là hình bình hành (1)

ta lại có 

BC=AD ( tứ giác ABDC là hình chữ nhật)

mà BK=KC

      AK=KD

suy ra BK=AK (2)

Từ 1 và 2 suy ra tứ giác AKBE là hình thoi

c) ta có

BI=IA

BK=KC

suy ra IK là đường trung bình

suy ra IK//AC

          IK=1/2AC

mà IK=1/2EK

Suy ra EK//AC 

           EK=AC

Suy ra tứ giác  AKBE là hình bình hành

B A C D E K

a: Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình

=>MN//BC và MN=BC/2

hay MN//BP và MN=BP

=>BMNP là hình bình hành

b: Xét tứ giác AKBH có 

M là trung điểm của HK

M là trung điểm của AB

Do đó: AKBH là hình bình hành

mà \(\widehat{AHB}=90^0\)

nên AKBH là hình chữ nhật

c: Xét ΔABC có 

M là trung điểm của AB

P là trung điểm của BC

Do đó: MP là đường trung bình

=>MP=AC/2(1)

Ta có: ΔAHC vuông tại H

mà HN là đường trung tuyến

nên HN=AC/2(2)

Từ (1) và (2) suy ra MP=HN

Xét tứ giác MNPH có MN//PH

nên MNPH là hình thang

mà MP=NH

nên MNPH là hình thang cân