Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình như cái Δ ABC cân thì phải (học lâu quá quên ồi)
a) Xét Δ ABC vuông tại A có:
\(\widehat{ABC}=45^o\) (gt)
Do đó: Δ ABC vuông cân (ở đây có thể nêu rõ vuông cân tại A)
Xét Δ ABC cân tại A có:
AD là tia phân giác của \(\widehat{BAC}\) (gt)
\(\Rightarrow\) AD là đường trung tuyến ứng với cạnh BC (t/c của tam giác cân)
\(\Rightarrow\) DB \(=\) DC (ĐPCM)
b) (ko bt e có học chứng minh tam giác đồng dạng chưa nhỉ ??? Nên a sẽ bỏ qua câu này, chờ e trả lời cái đã)
c) Ở câu này có thể làm bằng 2 cách
Cách 1: Chứng minh tổng 2 góc EBC và CBF = 90 độ
Cách 2: Nối EF, chứng minh tam giác BEF vuông tại B (dùng đ/lí Py-ta-go)
trương anh ơi, chứng minh tổng EBC + CBF=90 độ kiểu j bạn
A B C M a) Xét tam giác BAM và tam giác CAM có : BA = CA (GT) Góc BAM=góc CAM ( vì : AM là tia phân giác của góc BAC ) AM là cạnh chung Do đó: tam giác BAM = tam giác CAM(c.g.c) b) vì tam giác BAM = tam giác CAM (câu a) => góc AMB = góc AMC ( hai góc tương ứng) Mà : hai góc đó là hai góc kề bù Nên: Góc AMB=góc CAM = 90 độ => AM vuông góc với BC. D C) Xét tam giác BAD và tam giác CAD có: AB=AC( GT) BD=CD(GT) AD là cạnh chung =>Do đó :tam giác BAD=tam giác CAD(c.c.c) => AD là tia phân giác của góc A ( vì góc BAD=góc CAD) Nên: ba điểm A,D,M thẳng hàng => AM là đường trung trực của BC => AD cũng là đường trung trực của BC
Bài 5:
Tgiac ABC vuông cân tại A => góc CBA = 45 độ
Xét góc CBA là góc ngoài tgiac DBC => góc CBA = góc D + DCB
Xét tgiac DBC có DB = BC => tgiac DBC cân tại B => góc D = góc DBC
=> góc D = 45/2 = 22,5 độ
và góc ACD = 22,5 + 45 = 67,5 độ
Vậy số đo các góc của tgiac ACD là ...
Bài 6:
Tgiac ABC cân tại B, góc B = 100 độ => góc A = góc C = 40 độ
Xét tgiac ABD có AB = AD => tgiac ABD cân tại A => góc EDB (ADB) = (180-40)/2 =70 độ
cmtt với tgiac CBE => góc DEB = 70 độ
=> góc DBE = 180-70-70 = 40 độ
Bài 7:
Xét tgiac ABC cân tại A => góc BAC = 180 - 2.góc C => 2.(90 - góc C)
Xét tgiac BHC vuông tại H => góc CBH = 90 - góc C
=> đpcm
Bài 8: mai làm hihi
A B C M D
a) Xét ΔADB và ΔCDM có:
AD=CD(gt)
\(\widehat{ADB}=\widehat{CDM}\left(đđ\right)\)
DB=DM(gt)
=>ΔADB=ΔCDM(c.g.c)
=>AB=CM ; \(\widehat{BAC}=\widehat{MCA}\)
b)Xét ΔADM và ΔCDB có:
AD=DC(gt)
\(\widehat{ADM}=\widehat{CDB}\left(đđ\right)\)
DM=BD(gt)
=>ΔADM=ΔCDB(c.g.c)
=>\(\widehat{AMD}=\widehat{CBD}\).Mà hai góc này ở vị trí sole trong
=>AM//BC
c)Vì ΔADM=ΔCDB(cmt)
=>AM=BC
Xét ΔABC và ΔCMA có:
BC=AM(cmt)
AC:cạnh chung
AB=CM(cmt)
=>ΔABC=ΔCMA(c.c.c)
a: Xét ΔABD và ΔAED có
AB=AE
góc BAD=góc EAD
AD chung
=>ΔABD=ΔAED
=>DB=DE
b: Xét ΔDBF và ΔDEC có
DB=DE
góc DBF=góc DEC
BF=EC
=>ΔDBF=ΔDEC
=>góc BDF=góc EDC
=>góc BDF+góc BDE=180 độ
=>F,D,E thẳng hàng
c: Xét ΔAFC có AB/BF=AE/EC
nên BE//CF
d: Xét ΔABC và ΔAEF có
AB=AE
góc BAC chung
AC=AF
=>ΔABC=ΔAEF
ABC có đỉnh D mô mà vuông tại D vậy?