Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) +Xét tứ giác CRSM có: góc RCS= góc CSR= góc CRS = 90độ
=> Tứ giác CRSM là hcn (vì tứ giác có 3 góc vuông)
=>CM = RS (vì hcn có 2 đg chéo = nhau)
=>CM và RS cắt nhau tại trung điểm của mỗi đường (T/c đg chéo hcn)
Em tham khảo tại link dưới đây nhé:
Câu hỏi của Bùi Khánh Chi - Toán lớp 8 - Học toán với OnlineMath
Nối C với I.
Tam giác ABC vuông cân tại C (gt) \(\Rightarrow\widehat{A}=45^0\)
I là trung điểm của AB (gt) \(\Rightarrow IA=IB=\frac{1}{2}AB\)
\(\Delta ABC\) vuông tại C có CI là đường trung tuyến ứng với cạnh huyền AB nên CI = 1/2 AB
\(\Delta ABC\)cân tại C có CI là đường trung tuyến nên CI là đường cao đồng thời cũng là đường p/g (tính chất tam giác cân)
\(\Rightarrow CI\perp AB,\widehat{KCI}=\frac{1}{2}\widehat{ACB}=\frac{1}{2}.90^0=45^0\)
Bạn dễ dàng chứng minh được MHCK là hình chữ nhật (vì có 3 góc vuông) và tam giác AHM vuông cân tại H
\(\Rightarrow AH=HM=CK\)
\(\Delta AHI=\Delta CKI\left(c.g.c\right)\Rightarrow\hept{\begin{cases}IH=IK\\\widehat{AIH}=\widehat{CIK}\end{cases}}\)
Ta có: \(\widehat{HIK}=\widehat{HIC}+\widehat{CIK}=\widehat{AIH}+\widehat{HIC}=\widehat{AIC}=90^0\)
Tam giác IHK có: \(IH=IK,\widehat{HIK}=90^0\left(cmt\right)\)
Do đó: \(\Delta IHK\) vuông cân tại I.
Chúc bạn học tốt.
tự kẻ hình :
có M; N lần lượt là trung điểm của AB; AC (gt)
=> MN là đường tb của tam giác ABC (đn)
=> MN // BC (đl)
góc BCNM là tứ giác
=> BCNM là hình thang (đn)
a: Xét tứ giác ADME có
\(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)
=>ADME là hình chữ nhật
=>AM=DE
b: Xét ΔABC có
M là trung điểm của BC
MD//AC
Do đó: D là trung điểm của AB
Xét ΔABC có
M là trung điểm của BC
ME//AB
Do đó: E là trung điểm của AC
Xét ΔABC có
D,E lần lượt là trung điểm của AB,AC
=>DE là đường trung bình
=>DE//BC và DE=1/2BC
=>DE//MC và DE=MC
Xét tứ giác DMCE có
DE//MC
DE=MC
Do đó: DMCE là hình bình hành
c: ΔHAC vuông tại H có HE là trung tuyến
nên \(HE=\dfrac{1}{2}AC\)
mà \(MD=\dfrac{1}{2}AC\)
nên HE=MD
Xét tứ giác DHME có
ED//MH
nên DHME là hình thang
mà HE=MD
nên DHME là hình thang cân
ΔHAB vuông tại H
mà HD là trung tuyến
nên HD=AD
EA=EH
DA=DH
Do đó: ED là đường trung trực của AH
Ta có: MN ⊥ AB
=> góc MNA = 900
MP ⊥ AC
=> góc MPA = 900
Xét tứ giác ANMP có:
góc MNA = góc MPA = góc NAP = 900
=> tứ giác ANMP là hình vuông
Cho tam giác ABC vuông cân tại C.M là điểm thuộc AB , kẻ MR vuông góc với AC,MS vuông góc với BC.Gọi O là trung điểm của AB. Hỏi tam giác ABC là tam giác gì?
Trả lời :
Tam giác ABC là tam giác vuông cân tại A
Study well
Sorry nha mk nghi nộn
Tam giác ABC là tam giác vuông cân tại C
Study well