Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có
M là trung điểm của BA
N là trung điểm của AC
Do đó: MN là đường trung bình
=>MN//BC và MN=BC/2
=>MN=BE và MN//BE
=>BMNE là hình bình hành
b: Ta có: ΔAHB vuông tại H
mà HM là đường trung tuyến
nên HM=AM
=>M nằm trên đường trung trực của AH(1)
Ta có: ΔAHC vuông tại H
mà HN là đường trung tuyến
nên HN=AC/2=AN
=>N nằm trên đường trung trực của AH(2)
Từ (1) và (2) suy ra MN là đường trung trực của AH
Xét ΔABC có
M là trung điểm của AB
E là trung điểm của BC
Do đó: ME là đường trung bình
=>ME=AC/2
mà HN=AC/2
nên ME=HN
Xét tứ giác MNEH có MN//EH
nên MNEH là hình thang
mà ME=NH
nên MNEH là hình thang cân
a) 1 XÉt tam giác ABC có:
D là trung điểm của AB (giả thiết) (1)
F là trung điểm của BC ( giả thiết) (2)
Từ (1) và (2) suy ra DF là đường trung bình
Suy ra DF song song với AC suy ra DF song song AE (vì AE \(\in\)AC)
Suy ra DF=\(\frac{1}{2}\)AC mà AE cũng = \(\frac{1}{2}\)AC suy ra DF = AE
Xét tứ giác ADEF có:
DF song song AE (3)
DF=AE (4)
Từ (3) và (4) suy ra tứ giác DAEF là HBH
a, Ta có: DE//BC \(\Rightarrow\widehat{DEB}+\widehat{EBF}=180\)
mà góc EBF =90 => góc DEB =90 (1)
Chứng minh tương tự với DF//AB
\(\Rightarrow\widehat{EDF}=90;\widehat{BFD}=90\) (2)
Từ (1) và (2) => tứ giác BEDF là hình chữ nhật
a) vì ED//BC và DF//AB
Mà \(\Delta ABC\)vuông tại B
Nên \(DE\perp AB\)và \(DF\perp BC\)
Xét tứ giác BEDF có:
\(\widehat{B}=\widehat{DEB}=\widehat{DFB}=90^0\)
Vậy tứ giác BEDF là hình chữ nhật