K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2018

BD là phân giác góc ABC => góc ABD = góc EBD

=> tg ABD = tg EBD ( cạnh huyền - góc nhọn) => AB=BE

Gọi I là giao điểm của BD và AE
Ta có: tg ABI = tg EBD (c-g-c) => AI = EI và  góc ABI = góc EBI = 90độ

=> BD là trung trực của AE

c. Ta có tg ABD = tg EBD => AD = ED 

MÀ xét tg DEC vuông tại E có: ED < DC (cạnh gv < cạnh huyền)

=> DA<DC

a) Xét ∆ vuông ABC và ∆ vuông AED ta có : 

AB = AD (gt)

AC = AD (gt)

=> ∆ABC = ∆AED ( 2 cgv)

=> BD = DE 

b) Xét ∆ABD có : 

BAC = 90° 

=> AD\(\perp\)AE 

Mà AB = AD (gt)

=> ∆ABD vuông cân tại A 

=> BDC = 45° 

Chứng minh tương tự ta có : 

BCE = 45° 

=> BDC = BCE = 45° 

Mà 2 góc này ở vị trí so le trong 

=> BD//CE

a) Ta có: ABEˆ=12ABQˆ(BE là tia pg)

ABNˆ=12ABCˆ(BD là tia pg)

ABEˆ+ABNˆ=12ABQˆ+12ABCˆ

=12(ABQˆ+ABCˆ)=12.180o=900=DBEˆk

Áp dụng t/c đoạn thẳng nối trung điểm của 2 cạnh trong 1 tam giác thì // với cạnh còn lại

MN // BC hay MDMD // BC.BC.

MDBˆ=DBPˆ

mà DBPˆ=MBDˆ

MDBˆ=MBDˆΔMBD

MB=MD(1)

Do MD // BC hay ME // BQ MEBˆ=EBQˆ

mà EBQˆ=MBEˆMEBˆ=MBEˆ.

ΔMEB⇒ΔMEB cân tại M ME=MB(2)

Lại có: MA=MB(gt)(3)

Từ (1);(2);(3)MB=MD=ME=MA..

Xét ΔAMD;ΔBMEΔAMD;ΔBME: 

MA=MB(cmt)

AMDˆ=BMEˆ(đ2)

MD=ME(cmt)

ΔAMD=ΔBME(c.g.c)ΔAMD=ΔBME(c.g.

ADMˆ=BEMˆ

mà 2 góc này ở vị trí so le trong AD⇒AD // BE.

DBEˆ+ADBˆ=180o (trong cùng phía)

90o+ADBˆ=180oADBˆ=90o

BDAP.

28 tháng 6 2020

A B C D E I H 1 2 1 2 1 1 2 1

a) Từ I kẻ IH vuông góc với BC

Xét t/giác BID và BIH 

có: \(\widehat{B_1}=\widehat{B_2}\)(gt)

 BI: chung

 \(\widehat{BDI}=\widehat{BHI}=90^0\)

=> t/giác BID = t/giác BID (ch.gn)

=> DI = IH (2 cạnh t/ứng) (1)

CMTT: t/giác ECI = t/giác HCI (ch - gn)

=> EI = IH (2)

Từ (1) và (2) => DI = IE

Nối A và I

TA có: AH // IE (vì cùng vuông góc với AC) => \(\widehat{DAI}=\widehat{AIE}\)(slt)

Xét t/giác DAI và t/giác EIA

có: IA : chung

\(\widehat{ADI}=\widehat{IEA}=90^0\)(gt)

 \(\widehat{DAI}=\widehat{AIE}\)(cmt)

=> t/goác DAI = t/giác EIA (ch - gn)

=> DI = EA; AD = EI (các cặp cạnh tương ứng)

mà DI = EI (cmt) 

=> AE = AD (đpcm)

b) Xét t/giác ABC vuông tại A, ta có:

BC2 = AB2  + AC2 (định lí Pi - ta - go)

=> BC2 = 62 + 82 = 100

=> BC = 10 (cm)

Ta có: t/giác BID = t/giác BIH (cmt) => BD = BH (2 cạnh t/ứng)

t/giác CIE = t/giác CIH (cmt) => CH = EC (2 cạnh t/ứng)

=> BD + EC = DH + HC = BC = 10 cm

Ta lại có: AB + AC =  BD + AD + AE + EC = (BD + EC) + 2AD = 6 + 8

=> 2AD + 10 = 14

=> 2AD = 4 => AD = AE = 2 cm

28 tháng 6 2020

A B C I D E K

a) Vì I là giao điểm của phân giác \(\widehat{B}\)và \(\widehat{C}\)

=> AI là phân giác \(\widehat{A}\)

=> ID=IE (1)

\(\Delta ADI\)và \(\Delta AEI\)vuông cân

=> ID=AD; IE=AE (2)

Từ (1)(2) => ED=AE (đpcm)

b) Hạ IK _|_ BC; ID _|_ AB; IE _|_ AC

=> BD=BK; CK=CE; AD=AE

\(\Delta ABC\)vuông tại A có AB=6cm; AC=8cm. Áp dụng định lý Pytago ta có:

\(AB^2+AC^2=BC^2\)

\(\Rightarrow BC=\sqrt{6^2+8^2}=\sqrt{36+64}=\sqrt{100}=10\left(cm\right)\)

Đặt AD=x => BK=6-x; CK=8-c

=> 6-x+8-x=10

=> x=2

Vậy AD=2cm

Các bạn ơi giúp mình với .Mình đang vội lắm

1 tháng 5 2019

a, xét 2 tam giác vuông AEC và AED có:

            AC=AD(gt)

            AE cạnh chung

=> t.giác AEC=t.giác AED(cạnh huyền-cạnh góc vuông)

=> \(\widehat{CAE}\)=\(\widehat{DAE}\)=> AE là p/g của \(\widehat{CAD}\)<=> AE là p/g của \(\widehat{CAB}\)

b, xét t.giác AIC và t.giác AID có:

           AI cạnh chung

         \(\widehat{IAC}\)=\(\widehat{IAD}\)(theo câu a)

          AC=AD(gt)

=> t.giác AIC=t.giác AID(c.g.c)

=> IC=ID=> I là trung điểm của CD(1)

\(\widehat{AIC}\)=\(\widehat{AID}\)mà 2 góc này ở vị trí kề bù nên \(\widehat{AIC}\)=\(\widehat{AID}\)=90 độ=> AI\(\perp\)CD(2)

từ (1) và (2) suy ra AE là trung trực của CD

A B C D E I

Bài 1) .

Ta có : AB =AC ( gt)

=> ∆ABC cân tại A 

=> B = C 

Xét ∆ ABE và ∆ ACD ta có 

AD = DE ( gt)

AB = AC ( gt)

B = C ( cmt)

=> ∆ABE = ∆ACD ( c.g.c)

=> EAB = DAC (dpcm)

b) Vì M là trung điểm BC

=> BM = MC 

Mà ∆ABC cân tại A ( cmt)

=> AM là trung tuyến ∆ABC 

=> AM là trung tuyến đồng thời là đường cao và phân giác ∆ABC 

Mà D,E thuộc BC 

AM vuông góc với DE 

Mà ∆ADE cân tại A ( AD = AE )

=> AM là đường cao đồng thời là phân giác và trung tuyến ∆ ADE 

=> AM là phân giác DAE 

c) Vì AM là phân giác DAE 

=> DAM = EAM = 60/2 = 30 độ

= > Mà AM vuông góc với DE (cmt)

=> AME = AMD = 90 độ

=> AME + MAE + AEM = 180 độ

=> AEM = 180 - 90 - 30 = 60 độ

Mà ∆ADE cân tại A 

=> ADE = AED = 60 độ

Bài 2)

Trong ∆ABC có A = 90 độ

=> BAC = 90 độ :))))))