Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
click vào đường giải dưới đây
hình 9 | Diễn đàn HOCMAI - Cộng đồng học tập lớn nhất Việt Nam
ta có : \(\Delta BDH~\Delta BAC\Rightarrow\frac{BD}{DH}=\frac{BA}{AC}\)
ta có : \(\Delta DHA~\Delta ABC\Rightarrow\frac{HD}{DA}=\frac{AB}{AC}\) và \(\Delta CHE~\Delta CAB\Rightarrow\frac{CH}{HE}=\frac{AB}{AC}\)
nhâm ba đẳng thức lại ta có :
\(\frac{BD}{DH}.\frac{DH}{DA}.\frac{HE}{CE}=\left(\frac{AB}{AC}\right)^3\) mà DA=HE ( do DAEH là hình chữ nhậy)
nên \(\frac{BD}{CE}=\left(\frac{AB}{AC}\right)^3\)
Hình bạn tự vẽ nhé
a/ Ta có \(\widehat{ABC}=\widehat{ACB}=\frac{180-36}{2}=72\)
\(\widehat{ACD}=\widehat{DCB}=\frac{\widehat{ACB}}{2}=\frac{72}{2}=36\)
\(\Rightarrow\Delta ACD\)cân tại D (vì \(\widehat{ACD}=\widehat{DCA}=36\))
\(\Rightarrow DA=DC\left(1\right)\)
Ta lại có \(\widehat{CDB}=\widehat{DAC}+\widehat{ACD}=72\)
\(\Rightarrow\Delta DCB\)cân tại C (vì \(\widehat{CDB}=\widehat{CBD}=72\))
\(\Rightarrow BC=DC\left(2\right)\)
Từ (1) và (2) => DA = DC = BC = 1 (cm)
b/ Ta có
\(KC=BC.\sin\left(72\right)=\sin\left(72\right)\)
\(KB=BC.\cos\left(72\right)=\cos\left(72\right)\)
Vậy \(\Delta BKC\)có B = 72, C = 18, K = 90, KC = sin(72), KB = cos(72), BC = 1
+) Đặt: AB = AC = a
=> BC = a\(\sqrt{2}\)
D là trung điểm của AC -> AD = DC = a/2
=> BD = \(\frac{\sqrt{5}}{2}\)a ( pitago cho tam giác ABD vuông tại A )
+) \(\Delta\)ABD ~ \(\Delta\)ICD ( tự chứng minh )
=> \(\frac{AD}{DI}=\frac{BD}{CD}\Rightarrow\frac{\frac{a}{2}}{DI}=\frac{\frac{\sqrt{5}a}{2}}{\frac{a}{2}}\Rightarrow DI=\frac{a}{2\sqrt{5}}\)
+) \(\Delta\)DIC vuông tại I có IH là đường cao đáy DC
=> \(DI^2=DH.DC\Rightarrow DH=\frac{\frac{a^2}{4.5}}{\frac{a}{2}}=\frac{a}{10}\)=> AH = AD + DH = a/2 + a/10 = 3/5 (1)
\(IH^2=DI^2-DH^2=\frac{a^2}{20}-\frac{a^2}{100}=\frac{a^2}{25}\)=> IH = a/5 (2)
Từ (1) và (2) => AH = 3 IH
Cho cái hình, mới hc lp 8, ko bt lm
A B C D I H