Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi giao điểm của KD với BC là E
Xét ΔABC vuông tại A có AB=AC
nên ΔABC vuông cân tại A
=>\(\widehat{ACB}=\widehat{ABC}=45^0\)
Xét ΔCKB có
CH,BA là các đường cao
CH cắt BA tại D
Do đó: D là trực tâm của ΔCKB
=>KD\(\perp\)CB tại E
=>ΔECK vuông tại E
=>\(\widehat{EKC}+\widehat{ECK}=90^0\)
=>\(\widehat{EKC}=90^0-45^0=45^0\)
Xét ΔAKD vuông tại A có \(\widehat{AKD}=45^0\)
nên ΔAKD vuông cân tại A
=>AK=AD
a) Xét tam giác ABC vuông tại A và tam giác ADE vuông tại A có:
AD=AB(gt)
AE=AC( gt)
=>Tam giác ABC=tam giác ADE (2 cạnh góc vuông)
b) Tam giác ABD có: A=900 ; AB=AD (gt)
=>Tam giác ABD vuông cân tại A.
Mk biết làm nhiu đó thui
a: Xét ΔABC và ΔADE có
AB=AD
\(\widehat{BAC}=\widehat{DAE}\)(hai góc đối đỉnh)
AC=AE
Do đó: ΔABC=ΔADE
b: Xét ΔAHB vuông tại H và ΔAKD vuông tại K có
AB=AD
\(\widehat{ABH}=\widehat{ADK}\)(ΔABC=ΔADE)
Do đó: ΔAHB=ΔAKD
=>BH=DK
c: Ta có: ΔAHB=ΔAKD
=>\(\widehat{HAB}=\widehat{DAK}\)
mà \(\widehat{HAB}+\widehat{HAD}=180^0\)(hai góc kề bù)
nên \(\widehat{DAK}+\widehat{DAH}=180^0\)
=>K,A,H thẳng hàng
Em tham khảo tại đây nhé.
Câu hỏi của Marklin_9301 - Toán lớp 8 - Học toán với OnlineMath