K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2020

Câu b, c, thôi cx được ạ

27 tháng 2 2020

A B C E D H I

Xét tam giác BCD và tam giác CBE

có BC chung

góc CDB = góc CEB=900

góc EBC=góc DCB ( vì tam giác ABC cân tại A)

suy ra tam giác BCD = tam giác CBE ( cạnh huyền-góc nhọn)  (1)

b)  Từ (1) suy ra góc CBD=góc BCE ( hai góc tương ứng) (2)

Mà góc CBD + góc DBE= góc CBE  (3)

góc BCE+góc ECD = góc BCD  (4) 

góc EBC=góc DCB ( vì tam giác ABC cân tại A)  (5)

Từ (2), (3), (4) , (5) suy ra góc DCE=góc EBD

hay góc IBE = góc ICD

c) Từ (1) suy ra AE=AD (hai cạnh tương ứng)

Xét tam giác vuông ADI và tam giác vuông AEI có 

AI chung, AD=AE (CMT)

suy ra tam giá ADI = tam giác  AEI (cạnh huyền-cạnh góc vuông)

suy ra góc EAI = góc DAI (hai góc tương ứng)

suy ra AI là  tia phân giác của góc BAC

mà tam giác ABC cân tại A

suy ra AI là đường phân giác đồng thời là đường cao

AI vuông góc với BC tại H 

1 tháng 1 2016

ko giai dc nhieu qua voi lại mk ko gioi hih

27 tháng 2 2020

a) Xét \(\Delta\)ADI và \(\Delta\)AHI có:

     AD = AH (gt)

     DI = HI (gt)

    AI: cạnh chung

Do đó \(\Delta\)ADI = \(\Delta\)AHI (c.c.c)

b) Xét \(\Delta\)AHC vuông tại D và \(\Delta\)ABC vuông tại A có ^C chung nên ^HAC = ^B

\(\Delta\)ABC vuông tại A có ^C = 300 nên ^B = 600

Vậy ^HAC = 600

\(\Delta\)AHD có ^HAC = 600 và AH = AD nên \(\Delta\)AHD đều (đpcm)

c)  \(\Delta\)ADI = \(\Delta\)AHI (cmt) suy ra ^DAI = ^HAI (hai góc tương ứng)

Xét \(\Delta\)ADK và \(\Delta\)AHK có:

     AD = AH (gt)

     ^DAI = ^HAI (cmt)

    AK: cạnh chung

Do đó  \(\Delta\)ADK = \(\Delta\)AHK (c.g.c)

=> ^ADK = ^AHK = 900 (hai góc tương ứng)

Kết hợp với AB vuông góc AC suy ra AB//KD (đpcm)

d) Chứng minh được: \(\Delta\)AHB = \(\Delta\)EHK (c.g.c)

=> ^HAB = ^HEK => KE // AB

Khi đó qua K có hai đường thẳng KD, KE song song với AB (trái với tiên đề Ơ - cơ - lít)

Vậy KD trùng KE hay D,K,E thẳng hàng (đpcm)

Bài 1) 

a) Xét ∆ vuông ABK và ∆ vuông EBK ta có : 

AK = KC 

BK chung 

=> ∆ABK = ∆EBK ( ch-cgv)

=> AB = BE

=> ∆ABE cân tại B 

Mà ABK = EBK 

Hay BK là phân giác ABE 

=> ∆ABE cân có BK là phân giác 

=> BK là trung tuyến đồng thời là đường cao

=> BK\(\perp\)AE

b) Gọi H là giao điểm BK và DC 

Xét ∆ vuông AKD và ∆ vuông EKC ta có

AK = KE 

AKD = EKC ( đối đỉnh) 

=> ∆AKD = ∆EKC ( cgv-gn)

=> AD = EC ( tương ứng) 

Mà ∆ABE cân tại B (cmt)

=> AB = AE 

Mà AB + AD = BD 

BE + EC = BC 

=> BD = BC 

=> ∆BDC cân tại B 

=> BDC = \(\frac{180°-B}{2}\)

Vì ∆ABE cân tại B 

=> BAE = \(\frac{180°-B}{2}\)

=> BAE = BDC

Mà 2 góc này ở vị trí đồng vị 

=> AE//DC 

Vì H là giao điểm DC và BK

=> BH là phân giác DBC 

Mà ∆BDC cân tại B (cmt)

=> BK đồng thời là trung tuyến và đường cao

=> BH \(\perp\)DC

Hay BK \(\perp\)DC 

Bài 2)

Vì ∆ABC cân tại A

=> AB = AC 

=> ABC = ACB 

Xét ∆ vuông ABK và ∆ vuông ACE ta có : 

AB = AC 

A chung 

=> ∆ABK = ∆ACE ( ch-gn)

=> ABK = ACE ( tương ứng) 

Xét ∆AOB và ∆AOC ta có : 

AB = AC 

ABK = ACE 

AO chung

=> ∆AOB = ∆AOC (c.g.c)

=> BAO = CAO 

Hay AO là phân giác BAC 

b) Vì ∆AKB = ∆AEC (cmt)

=> AE = AK 

Mà AB = AC 

=>EB = KC

Xét ∆ vuông KOC và ∆ vuông EOB ta có 

EB = KC 

EOB = KOC ( đối đỉnh) 

=> ∆KOC = ∆EOB ( cgv-gn)

=> OB = OC 

=> ∆OBC cân tại O 

c) Xét ∆ cân ABC ta có :

AO là phân giác BAC 

AI là trung tuyến BC 

=> AI đồng thời là phân giác và là đường cao

=> A , O , I thẳng hàng

1.Cho tam giác ABC.Hai đường cao kể từ B và C cắt nhau tại H.Biết AC=BH.Tính góc ABC.2.Cho tam giác ABC.Hai đường cao kể từ B và C cắt nhau tại H.Biết AC=BH.Tính góc ABC3.Cho tam giácABC vuông cân tại A.M là trung điểm BC.Trên cạng BClấy điểm E.Trên cạnh AClấy điểm F sao cho góc EFM =900.C/m AE =CF4.Cho tam giác ABC có AB =3 cm.Góc A=75 độ,góc C=60 độ.Trên nửa mặt phẳng bờ chứa BC có chứa A vẽ tia Bx sao...
Đọc tiếp

1.Cho tam giác ABC.Hai đường cao kể từ B và C cắt nhau tại H.Biết AC=BH.Tính góc ABC.

2.Cho tam giác ABC.Hai đường cao kể từ B và C cắt nhau tại H.Biết AC=BH.Tính góc ABC

3.Cho tam giácABC vuông cân tại A.M là trung điểm BC.Trên cạng BClấy điểm E.Trên cạnh AClấy điểm F sao cho góc EFM =900.C/m AE =CF

4.Cho tam giác ABC có AB =3 cm.Góc A=75 độ,góc C=60 độ.Trên nửa mặt phẳng bờ chứa BC có chứa A vẽ tia Bx sao cho góc CBx =15 độ.Từ A vẽ một đường thẳng vuông góc với AB,cắt Bx tại D.

a) c/m BC vuông góc với Bx

b)Tính tổng BC2+CD2

5.cho tam giác ABC có AB > AC . Từ trung điểm M của BC vẽ một đường thẳng vuông góc với tia phân giác của góc A, cắt tia phân giác tại H, cắt AB, AC lần lượt tại E VÀ F. chứng minh rằng :

a) BE=CF

b) AB+AC=2AE

c)ACB^-ABC^=2BEM^

 

 

CAC BN GIUP MNH GAP!!!

MINH DANG CAN+-+!!

 

0
4 tháng 5 2019

A B C D K M Q

a) b) cậu biết làm rồi nhé

c) Vì K là trung điểm cạnh BC ( gt )

\(\Rightarrow DK\)là trung tuyến cạnh BC.

 Vì A là trung điểm của BD

\(\Rightarrow AC\)là trung tuyến cạnh BD

mà DK cắt AC tại M 

\(\Rightarrow M\)là trọng tâm của tam giác BCD.

\(\Rightarrow MC=\frac{2}{3}AC\left(tc\right)\)

( BẠN TỰ THAY VÀO NHA )

4 tháng 5 2019

d) Vì tam giác BCD cân ( cmt )

\(\Rightarrow BC=DC\left(đn\right)\)

Mà AC là  trung tuyến của tam giác BCD ( cmt )

\(\Rightarrow AC\)cũng là đường phân giác của góc BCD .( tc)

\(\Rightarrow\widehat{BCA}=\widehat{DCA}=\frac{1}{2}\widehat{BCD}\)

Xét tam giác BCM và tam giác DCM có:

    \(\hept{\begin{cases}CMchung\\BC=CD\left(cmt\right)\\\widehat{BCA}=\widehat{DCA}\left(cmt\right)\end{cases}\Rightarrow\Delta BCM=\Delta DCM\left(c-g-c\right)}\)

\(\Rightarrow\hept{\begin{cases}BM=DM\left(2canht.ung\right)\left(1\right)\\\widehat{CBM}=\widehat{CDM}\left(2goct.ung\right)\end{cases}}\)

Xét tam giác BMK và tam giác DMQ có:

   \(\hept{\begin{cases}BM=DM\left(cmt\right)\\\widehat{CDM}=\widehat{CBM}\left(cmt\right)\\\widehat{BMK}=\widehat{QMD}\left(2gocdoidinh\right)\end{cases}\Rightarrow\Delta BMK=\Delta DMQ\left(g-c-g\right)}\) 

 \(\Rightarrow MK=MQ\left(2canht.ung\right)\left(2\right)\)

Vì M là trọng tâm của tam giác BCD (cmt)  (4)

 mà DK là trung tuyến của tam giác BCD (cmt)

\(\Rightarrow DM=2.MK\left(tc\right)\left(3\right)\)

Từ (1), (2) và (3) \(\Rightarrow BM=2.MQ\)

\(\Rightarrow BQ\)là trung tuyến của tam giác BCD (5)

Từ (4) và (5) \(\Rightarrow B,M,Q\)thẳng hàng