Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ΔBDC vuông cân tại B
=>góc BCD=góc BDC=45 độ
ΔABC vuông cân tại A
=>góc ABC=góc ACB=45 độ
góc ABC=góc DCB
mà hai góc này ở vị trí so le trong
nên AB//DC
mà AB vuông góc AC
nên DC vuông góc AC
Xét tứ giác ABDC có
AB//DC
góc CAB=90 độ
Do đó: ABDC là hình thang vuông
Bài giải
A B C D 1 2 1
Vì \(\Delta ABC\) vuông cân tại A nên \(\widehat{B_1}=\widehat{C_1}=\left(180^o-90^o\right)\text{ : }2=45^o\)
Vì \(\Delta BCD\) vuông cân tại B nên \(\widehat{D}=\widehat{C_2}=\left(180^o-90^o\right)\text{ : }2=45^o\)
\(\Rightarrow\text{ }\widehat{B_1}=\widehat{C_2}\left(=45^o\right)\) nên \(AB\text{ }//\text{ }CD\)
\(\Rightarrow\text{ Tứ giác ABCD là hình thang}\)
A B C D
ta có tam giác ABC vuông cân tại A nên => góc BCA =ABC =45 độ
tương tự ta có tam giác BDC vuông cân tại B nên ta có góc BDC = góc DCB = 45 độ
=> góc BCA = góc DCB (=45 độ)
mà hai góc này nằm ở vị trí so le trong nên => AB // DC => ABDC là hình thang
Mặt khác hình thang ABDC có góc A vuông nên là hình thang vuông
Vì ∆ ABC vuông cân tại A nên \(\widehat{C_1}=45^o\)
Vì ∆ BCD vuông cân tại B nên \(\widehat{C_2}=45^o\)
\(\Rightarrow\widehat{ACD}=\widehat{C_1}+\widehat{C_2}=45^o+45^o=90^o\)
\(\Rightarrow\) AC ⊥ CD, AC ⊥ AB (gt)
Suy ra: AB // CD. Vậy tứ giác ABDC là hình thang vuông.
Vì ΔABC vuông cân tại A nên
Lại có: ( tính chất tam giác vuông).
Suy ra: ∠ C 1 = 45 0
Vì ∆ BCD vuông cân tại B nên
Lại có: ( tính chất tam giác vuông).
Suy ra: ∠ C 2 = 45 0
∠ (ACD) = ∠ C 1 + ∠ C 2 = 45 0 + 45 0 = 90 0
⇒ AC ⊥ CD
Mà AC ⊥ AB (gt)
Suy ra: AB //CD
Vậy tứ giác ABCD là hình thang vuông.
#)Giải :
A B C D 1 2
Vì ∆ABC vuông cân tại A => \(\widehat{C_1}=45^o\)
∆BCD vuông cân tại B => \(\widehat{C_2}=45^o\)
Tứ giác ABCD có AB // CD và \(\widehat{A}=90^o\)=> Tứ giác ABCD là hình thang vuông
Vì ∆ABC vuông cân tại A nên \(\widehat{C_1}=45^o\)
Vì ∆BCD vuông cân tại B nên \(\widehat{C_2}=45^o\)
\(\Rightarrow\widehat{ACD}=\widehat{C_1}+\widehat{C_2}=45^o+45^o=90^o\)
\(\Rightarrow AC\perp CD,\) \(AC\perp AB\left(gt\right)\)
\(\Rightarrow AB//CD\). Vậy tứ giác ABDC là hình thang vuông.
Ta có: \(\widehat{DCB}=\widehat{CBA}\left(=45^0\right)\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//CD
Xét tứ giác ABDC có DC//BA
nên ABDC là hình thang
mà \(\widehat{CAB}=90^0\)
nên ABDC là hình thang vuông