Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABM vuông tại M và ΔACM vuông tại M có
AB=AC
AM chung
Do đó: ΔABM=ΔACM
b: Xét ΔABE và ΔACD có
AB=AC
\(\widehat{BAE}\) chung
AE=AD
Do đó: ΔABE=ΔACD
Xét ΔABC có \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)
nên DE//BC
c: Ta có: AD+DB=AB
AE+EC=AC
mà AD=AE và AB=AC
nên DB=EC
Xét ΔDBC và ΔECB có
DB=EC
\(\widehat{DBC}=\widehat{ECB}\)
BC chung
Do đó: ΔDBC=ΔECB
=>\(\widehat{DCB}=\widehat{EBC}\)
=>\(\widehat{IBC}=\widehat{ICB}\)
=>ΔIBC cân tại I
Xét ΔAIB và ΔAIC có
AI chung
IB=IC
AB=AC
Do đó: ΔAIB=ΔAIC
=>\(\widehat{BAI}=\widehat{CAI}\)
=>AI là phân giác của góc BAC
a) Xét Δ BDF và Δ ACD có: góc B = góc A ( vì cùng bằng 900 )
BF = AD ( vì cùng bằng CE )
BD = AC ( gt )
Nên Δ BDF = Δ ACD (c.g.c)
b) Vì Δ BDF =Δ ACD (cmt) → DF = DC ( hai cạnh tương ứng ) (1)
và góc ACD = góc BDF ( hai góc tương ứng )
Ta có: góc ADC = 1800 - góc A - góc ACD ( tổng 3 góc của tam giác)
và góc ADC = 1800 - góc FDC - góc BDF ( kề bù )
Mà : góc ACD = góc BDF ( cmt) → góc FDC = góc A = 900 (2)
Từ (1) và (2) , ta có: DF = CD và góc FDC = 900
→ tam giác CDF là tam giác vuông cân
P/s: Đây là lần đầu tiên mình làm toán trên HOC24 nên có gì sai sót, mong các bạn bỏ qua!
A B C D E F
Cho tam giác ABC vuông cân tại A.Gọi D là 1 điểm bất kì trên cạnh BC ( D khác B và C).Và nằm trên cùng 1 nửa mặt phẳng BC và điểm A.Qua A vẽ đường thẳng vuông góc với AD cắt Bx tại M và cắt Cy tại N.Chứng minh :
a) 2 tam giác : AMB=ADC
b) A là trung điểm của MN.
a.Ta có : ΔABC vuông cân tại A (gt)
Mà MB⊥BC,NC⊥BC
→ˆMBA=ˆACD=45 độ (Tính chất tam giác vuông cân)
Lại có : AD⊥MN,AB⊥AC
→ˆMAB+ˆBAD=ˆBAD+ˆDAC(=90độ)
→ˆMAB=ˆDAC
Mặt khác AB=AC→ΔMAB=ΔDAC(g.c.g)
→AM=AD,BM=DC
b.Tương tự câu a ta chứng minh được AN=AD,CN=BD
→AM=AN→A là trung điểm MN
c.Từ a,b →BC=BD+DC=CN+BM
d.Ta có : AM=AD,AD⊥MN→ΔAMD vuông cân tại A
Tương tự ΔAND vuông cân tại A
→ˆAMD=ˆAND=45độ→ΔDMN vuông cân tại D