Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn vẽ hình ra đã rồi nhìn lời giải nhá
a) TG' ABC vuông cân tại A -> g' ABC = g' ACB = 45 và AB = AC
TG' ABH vuông tại H -> g' ABH = 90 - BAH (1)
Có g' CAH = 90 - BAH ( TG' ABC vuông tại A ) (2)
Từ (1) và (2) -> g' ABH = g' CAH
Xét TG' AHB và TG' AKC có
g' AHB = g' AKC ( = 90 )
AB = AC ( gt )
g' HAB = g' KAC ( cmt )
-> TG' AHB = TG' AKC ( ch - gn )
-> BH = Ak
Bài làm
a) Xét tam giác ABC có:
\(\widehat{BAE}+\widehat{EAC}=90^0\)( Hai góc phụ nhau )
Xét tam giác AKC có:
\(\widehat{EAC}+\widehat{KCA}=90^0\)
=> \(\widehat{BAE}=\widehat{EAC}\)
Xét tam giác BHA và tam giác AKC có:
\(\widehat{BHA}=\widehat{AKC}=90^0\)
Cạnh huyền AB = AC ( Do tam giác ABC vuông cân ở A )
Góc nhọn: \(\widehat{BAE}=\widehat{EAC}\)( cmt )
=> Tam giác BHA = Tam giác AKC ( Cạnh huyền - góc nhọn )
=> BH = AK ( hai cạnh tương ứng )
b) Vì tam giác ABC vuông cân ở A
Mà AM là trung tuyến ( Do M là trung điểm BC )
=> AM cũng là đường cao của BC
=> AM vuông góc với BC
Xét tam giác AME vuông ở H có:
\(\widehat{MEA}+\widehat{MAE}=90^0\)
Xét tam giác KEC vuông ở K có:
\(\widehat{KEC}+\widehat{KCE}=90^0\)
Mà \(\widehat{MEA}=\widehat{KEC}\)( hai góc đối đỉnh )
=> \(\widehat{MAE}=\widehat{KCE}\) (1)
Ta có: CK vuông góc với AK
BH vuông góc với AK
=> CK // BH
=> \(\widehat{KCE}=\widehat{EBH}\) (2)
Từ (1) và (2) => \(\widehat{EBH}=\widehat{MAE}\)
Xét tam giác MAC vuông ở M có:
\(\widehat{MCA}+\widehat{MAC}=90^0\)
Xét tam giác ABC vuông ở A có:
\(\widehat{ABC}+\widehat{MCA}=90^0\)
=> \(\widehat{MAC}=\widehat{ABC}\)
Mà \(\widehat{ABC}=\widehat{MCA}\)( Do tam giác ABC vuông cân ở A )
=> \(\widehat{MAC}=\widehat{MCA}\)
=> Tam giác MAC vuông cân ở M
=> MA = MC
Mà BM = MC ( Do M trung điểm BC )
=> MA = MC = BM
Xét tam giác MBH và tam giác MAK có:
AM = BM ( cmt )
\(\widehat{EBH}=\widehat{MAE}\)( cmt )
AK = BH ( cmt )
=> Tam giác MBH = tam giác MAK ( c.g.c )
c) Vì tam giác MBH = tam giác MAK ( cmt )
=> \(\widehat{MKH}=\widehat{BHM}\) (3)
=> MK = MH
=> Tam giác MHK cân ở M (4)
Xét tam giác BHE vuông ở H có:
\(\widehat{BHM}+\widehat{MHK}=90^0\)( Hai góc phụ nhau ) (5)
Thay (3) vào (5) ta được: \(\widehat{MKH}+\widehat{MHK}=90^0\)
=> Tam giác MHK vuông ở M (6)
Từ (4) và (6) => Tam giác MHK vuông cân ở M
# Mik thấy nhiều bạn khó câu này nên mik lm #
Bạn tự vẽ hình nha
a.Vì tam giác ABC cân tại A nên AB= AC và góc ABC = góc ACB
<=> góc ABM = góc ACN (vì các góc kề bù với nhau)
Xét tam giác ABM và tam giác ACN
Có: AB = AC (CMT)
góc ABM = góc ACN (CMT)
BM = CN (gt)
<=> tam giác ABM = tam giác ACN (c.g.c)
<=> AM = AN ( 2 góc tương ứng)
<=> tam giác AMN cân tại A
b. Vì tam giác ABM = tam giác ACN (CMT)
<=> góc MAB = góc CAN ( 2 góc tương ứng)
Xét tam giác vuông AHB và tam giác vuông AKC
Có: AB= AC (CMT)
góc AHB= góc AKC= 90 độ
góc MAB = góc CAN (CMT)
<=> tam giác AHB = tam giác AKC ( cạnh huyền- góc nhọn)
a. Xét tam giác BAH và tam giác CAK
BHA= CKA=90*
BA=AC (gt)
BAH=CAK ( cùng phụ với HAC)
=> tam giác BAH=tam giác CAK( ch-gn)
=> BH=AK (2 cạnh tương ứng)
b. Gọi I là giao điểm của AM và KC
Vì BH vg AH; Ck vg AH => BH// CK
=> HBM=KCM (so le trong )
Do tam giác IMC vuông tại M => MIC+MCI= 90*
Lại có tam giác AKI vuông tại K nên KAI+KIA=90*
Mà KIA= MIC( đối đỉnh)=> MIC= AKI hay MCK= KAM => AKM = MBH
Xét tam giác BHM và tam giác AKM
BH= AK ( theo câu a)
HBM= AKM( c/m trên)
BM = AM ( AM là trung tuyến tam giác vuông)
=> tam giác BHM= tam giác AKM(cgc)
c. Theo câu b,
tam giác BHM= tam giác AKM(cgc)
=> HM= KM(2 cạnh tương ứng)
Ta có BMK+KMA=BMA=90*
Mà HMB= KMA=> BMK+HMB=90*=HMK
Xét tam giác KMH có: HMK=90*; HM=KM => tam giác KMH vuông cân tại M
a) Ta có ^ABH + ^BAH = 90° Măt khác ^CAH + ^BAH = 90°
=> ^ABH = ^CAH
Xét ▲ABH và ▲CAK có:
^H = ^C (= 90°)
AB = AC (T.g ABC vuông cân)
^ABH = ^CAH (cmt)
=> △ABH = △CAK (c.h-g.n)
=> BH = AK
b) Ta có BH//CK (Cùng ┴ AK)
=>^HBM = ^MCK (SLT)(1)
Mặt khác ^MAE + ^AEM = 90°(2)
Và ^MCK + ^CEK = 90°(3)
Nhưng ^AEM = ^CEK (đ đ)(4)
Từ 2,3,4 => ^MAE = ^ECK (5)
Từ 1,5 => ^HBM = ^MAE
Ta lại có AM là trung tuyến của tam giác vuông ABC nên AM = BM =MC = 1/2 BC
Xét ▲MBH và ▲MAK có:
MB = AM (cmt); ^HBM = ^MAK(cmt); BH = AK (cma)
=> △MBH = △MAK (c.g.c)
c) Theo câu a, b ta có: AH = CK; MH = MK; AM = MC nên : ▲AMH = ▲ CMK (c.c.c)
=> ^AMH = ^CMK; mà ^AMH + ^HMC = 90 độ
=> ^CMK + ^HMC = 90° hay ^HMK = 90°
Tam giác HMK có MK = MH và ^HMK = 90° nên vuông cân tại M (đpcm).
Chúc bạn học tốt!
Bạn tham khảo tại link này nhé
https://h.vn/hoi-dap/question/192990.html
Câu hỏi của Lê Thị Thùy Dung - Toán lớp 7 | Học trực tuyến
Giúp trước câu a),mấy câu kia để tối đi học về làm tiếp,nhớ nhắc mình. Vì mình còn phải suy nghĩ cách trình bày!
A B C M E H K
a) Dễ thấy: \(\widehat{ABH}=\widehat{KAC}\) (do cùng phụ \(\widehat{BAH}\))
Xét \(\Delta BAH\)và \(\Delta ACK\) có:
AB = AC (gt)
\(\widehat{ABH}=\widehat{KAC}\) (chứng minh trên)
\(\widehat{BHA}=\widehat{AKC}\left(=90^o\right)\) (gt)
Do đó \(\Delta BAH=\Delta ACK\) (cạnh huyền - góc nhọn)
Do đó AH = CK (hai cạnh tương ứng)
Giúp luôn câu b)
b) Ta có: \(\Delta BAH=\Delta ACK\) (chứng minh trên câu a)
Mà tam giác ABC vuông cân nên \(\widehat{ABC}=45^o;\widehat{MAC}=45^o\Rightarrow\widehat{HBM}=\widehat{KAM}\)
Lại có BM = AM (= 1/2 BC)
Do đó tam giác MBH = tam giác MAK (c.g.c)
Suy ra MH = MK; góc BMH = góc AMK
Do vậy góc BMA = HMK = 90o
Do đó tam giác MHK vuông cân (tại M)