Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
1.
Xét tam giác $ABH$ và $ACH$ có:
$AH$ chung
$AB=AC$ (do $ABC$ cân tại $A$)
$BH=CH$ (do $H$ là trung điểm của $BC$)
$\Rightarrow \triangle ABH=\triangle ACH$ (c.c.c)
$\Rightarrow \widehat{AHB}=\widehat{AHC}$
Mà $\widehat{AHB}+\widehat{AHC}=\widehat{BHC}=180^0$
$\Rightarrow \widehat{AHB}=\widehat{AHC}=90^0$
$\Rightarrow AH\perp BC$
2. Dễ thấy $ME\parallel DA, MD\parallel AE$
Xét tam giác $ADM$ và $MEA$ có:
$\widehat{DAM}=\widehat{EMA}$ (so le trong)
$\widehat{DMA}=\widehat{EAM}$ (so le trong)
$MA$ chung
$\Rightarrow \triangle ADM=\triangle MEA$ (g.c.g)
$\Rightarrow DM=EA(1), AD=ME$
Do $ABC$ là tam giác vuông cân nên $\widehat{B}=45^0$
Tam giác $BDM$ vuông tại $D$ có góc $\widehat{B}=45^0$ nên là tam giác vuông cân. $\Rightarrow BD=DM(2)$
Từ $(1);(2)\Rightarrow BD=AE$
Mà $AB=AC\Rightarrow AB-BD=AC-AE\Leftrightarrow AD=EC$ (đpcm)
3.
Áp dụng định lý Pitago cho các tam giác vuông:
$MB^2+MC^2=(BD^2+DM^2)+(ME^2+EC^2)$
$=(DM^2+DM^2)+(AD^2+AD^2)=2(DM^2+AD^2)=2AM^2$ (đpcm)
A B C M K E H 1 2 3 1 1 2 1 2 3
Do ΔABC cân nên AM vừa là đường trung tuyến vừa là đường trung trực với cạnh BC
=> ΔAMB và ΔAMC vuông cân và bằng nhau
=> Góc C1= Góc A1
Xét ΔABH và ΔCAK có
BA=AC( ΔABC cân)
Góc B1=Góc A3 ( cùng phụ với góc BAK)
Đều _|_ AK
=> ΔCAK=ΔABH ( cạnh huyền góc nhọn)
=> Góc BAK = Góc CAK
Mà Góc C1= Góc A1
=> Góc A2= Góc C2
Xét 2 ΔAHM và ΔCKM có
AM=MC ( đường trung tuyến ứng với cạnh huyền)
Góc A2= Góc C2 (cmt)
AH=CK (vì ΔCAK=ΔABH)
=> ΔAHM = ΔCKM (c.g.c)
=>HM=MK=> ΔMHK cân tại M (1)
Ta lại có Góc M1= Góc M2
mà Góc M1+góc M3=90o
=> Góc M2+ Góc M3 = Góc HMK =90o (2)
Từ (1) Và (2) => ΔMHK vuông cân tại M
1,Ta có: Tam giác ABC là tam giác vuông cân
=> AB=AC
Mặt khác có:
mà => Lại có:Tam giác HBA vuông tại H và tam giác KAC vuông tại K
Từ ;; => tam giác HBA = tam giác KAC﴾Ch‐gn﴿
=>BH=AK﴾đpcm﴿
2,Ta có:AM là trung tuyến của tam giác cân => AM cũng là đường cao
Mặt khác:
mà => Tam giác AHM=tam giác CKM ﴾c.g.c﴿ vì
Có:AM=MC﴾AM là trung tuyến ứng với cạnh huyền﴿
AH=CK ﴾câu a﴿
=>MH=MK và
Ta có: ﴾AM là đường cao﴿
Từ ; => Góc HMK vuông
Kết hợp ;=> MHK là tam giác vuông cân