Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C A B M D E d
a) Ta có : CE ⊥ d
BD ⊥ d
\(\Rightarrow\)CE // BD (ĐPCM)
b) Xét △CEA và △ADB có :
AC = AB
\(\widehat{EAC}=\widehat{ABD}\)(cùng phụ với \(\widehat{DAB}\))
\(\Rightarrow\) △CEA = △ADB (cạnh huyền-góc nhọn)
c) Có △CEA = △ADB
\(\Rightarrow\hept{\begin{cases}BD=AE\\CE=AD\end{cases}}\)(Cặp cạnh tương ứng)
\(\Rightarrow\)BD + CE = AE + AD = DE (ĐPCM)
d) △ABC vuông tại A có AM là trung tuyến
\(\Rightarrow\)AM = BM = CM
\(\Rightarrow\)△ABM cân tại M
Có : \(\widehat{ECA}=\widehat{BAD}\)(△CEA = △ADB)
\(\widehat{ACB}=\widehat{ABC}\) (△ABC cân tại A)
\(\Rightarrow\widehat{ECA}+\widehat{ACB}=\widehat{BAD}+\widehat{ABC}\)
Mà \(\widehat{ABC}=\widehat{MAB}\)(△MAC cân tại M)
\(\Rightarrow\widehat{ECA}+\widehat{ACB}=\widehat{BAD}+\widehat{MAB}\)
\(\Rightarrow\widehat{ECM}=\widehat{MAD}\)
Xét △ADM và △CEM có :
EC = AD
\(\widehat{ECM}=\widehat{MAD}\)
AM = CM
\(\Rightarrow\)△ADM = △CEM (c-g-c) (ĐPCM)
\(\Rightarrow\)EM = MD (Cặp cạnh tương ứng) (1)
Có : \(\widehat{EMA}+\widehat{EMC}=90^o\)
\(\widehat{EMC}=\widehat{DMA}\)(△ADM = △CEM)
\(\Rightarrow\widehat{EMA}+\widehat{DMA}=90^o\)
\(\Rightarrow\widehat{EMD}=90^o\)(2)
Từ (1) và (2) suy ra △DME vuông cân tại M.
Bài 1:
|x-3| + | 2x - 4| =5
Lập bảng xét dấu:
x | 2 3 |
2x -2 | - 0 + | + |
x - 3 | - | - 0 + |
* Nếu x \(>\) 3 đẳng thức trở thành
x - 3 + 2x -4 = 5 => x = 4( thỏa mãn)
* Nếu 2\(\le\) x <3
3 - x + 2x -4 = 5 => x = 6 ( k thỏa mãn)
+ Nếu x < 2
3 - x + 4 - 2x = 5 => x = 2/3 (thỏa mãn)
Tự vẽ hình nha!
Xét tam giác BMK và tam giác CNK có:
BM=CN (gt)
Góc BKM=góc CKN (hai góc đối đỉnh)
MK=NK (K là trung điểm MN)
=> tam giác BMK=tam giác CNK (c.g.c)
=> BK=CK
=> K là trung điểm BC
=> B,K,C thẳng hàng.
A/ Theo giả thiết ta có:DA=BA;AE=AC\(\Rightarrow\) DC=BE
Vì tam giác BDA là tam giác vuông cân\(\Rightarrow\)góc A=90 độ\(\Rightarrow\) DC vuông góc vs BE
B/ Áp dụng định lý Pi-ta-go cho tam giác BAD vuông tại A:BD2=BA2+AD2
ACE vuông tại A:CE2=AC2+AE2
ADE vuông tại A:DE2=DA2+AE2
BAC vuông tại A:BC2=AB2+AC2
Từ trên suy ra:BD2+CE2=BC2+DE2
C/Xét tam giác BAC và DAE:DA=BA
BA=AE
GÓC BAC=GÓC DAE=90
\(\Rightarrow\) Tam giác BAC=DAE(c-g-c)
\(\rightarrow\) BC=DE(2 cạnh t/ứ)
\(\rightarrow\) góc CBA=góc AED(t/ứ)
mà 2 góc nàm vị trí so le trong\(\Rightarrow\)BC song song DE
\(\rightarrow\) góc BCE+góc CED=180 ĐỘ(2 góc phía trong cùng phía)
mà góc DCE=góc BEC(TAM GIÁC cae VUÔNG CÂN)
\(\Rightarrow\) Góc BCD=góc BED
MÀ góc BCD=CDE(so le trong)
\(\Rightarrow\) góc ADE=góc AED\(\Rightarrow\) TAM GIÁC ADE vuông cân tai E
mà ta có AI(IK cắt DE ở I)LÀ đường trung trực của tam giác
\(\rightarrow\) AI cx là đg trung tuyến của ADE
\(\Rightarrow\) I là trung điểm của DE
MÀ ta lại có BC=DE(cm phần trên rồi)
\(\Rightarrow\) k là trung điểm của BC
(ko bít vẽ hình)