Cho tam giác ABC vuông cân tại A có M là trung điểm của BC; E là điểm thuộc đoạn thẳng MC (E...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có ^ABH + ^BAH = 90° Măt khác ^CAH + ^BAH = 90° 
=> ^ABH = ^CAH 
Xét ▲ABH và ▲CAK có: 
^H = ^C (= 90°) 
AB = AC (T.g ABC vuông cân) 
^ABH = ^CAH (cmt) 
=> △ABH = △CAK (c.h-g.n) 
=> BH = AK 
b) Ta có BH//CK (Cùng ┴ AK) 
=>^HBM = ^MCK (SLT)(1) 
Mặt khác ^MAE + ^AEM = 90°(2) 
Và ^MCK + ^CEK = 90°(3) 
Nhưng ^AEM = ^CEK (đ đ)(4) 
Từ 2,3,4 => ^MAE = ^ECK (5) 
Từ 1,5 => ^HBM = ^MAE 
Ta lại có AM là trung tuyến của tam giác vuông ABC nên AM = BM =MC = 1/2 BC 
Xét ▲MBH và ▲MAK có: 
MB = AM (cmt); ^HBM = ^MAK(cmt); BH = AK (cma) 
=> △MBH = △MAK (c.g.c) 
c) Theo câu a, b ta có: AH = CK; MH = MK; AM = MC nên : ▲AMH = ▲ CMK (c.c.c) 
=> ^AMH = ^CMK; mà ^AMH + ^HMC = 90 độ 
=> ^CMK + ^HMC = 90° hay ^HMK = 90° 
Tam giác HMK có MK = MH và ^HMK = 90° nên vuông cân

Bài làm

a) Xét tam giác ABC có: 

\(\widehat{BAE}+\widehat{EAC}=90^0\)( Hai góc phụ nhau )

Xét tam giác AKC có:

\(\widehat{EAC}+\widehat{KCA}=90^0\)

=> \(\widehat{BAE}=\widehat{EAC}\)

Xét tam giác BHA và tam giác AKC có:

\(\widehat{BHA}=\widehat{AKC}=90^0\)

Cạnh huyền AB = AC ( Do tam giác ABC vuông cân ở A )

Góc nhọn: \(\widehat{BAE}=\widehat{EAC}\)( cmt )

=> Tam giác BHA = Tam giác AKC ( Cạnh huyền - góc nhọn )

=> BH = AK ( hai cạnh tương ứng )

b) Vì tam giác ABC vuông cân ở A

Mà AM là trung tuyến ( Do M là trung điểm BC )

=> AM cũng là đường cao của BC

=> AM vuông góc với BC

Xét tam giác AME vuông ở H có:

\(\widehat{MEA}+\widehat{MAE}=90^0\)

Xét tam giác KEC vuông ở K có:

\(\widehat{KEC}+\widehat{KCE}=90^0\)

Mà \(\widehat{MEA}=\widehat{KEC}\)( hai góc đối đỉnh )

=> \(\widehat{MAE}=\widehat{KCE}\)                         (1) 

Ta có: CK vuông góc với AK

BH vuông góc với AK

=> CK // BH 

=> \(\widehat{KCE}=\widehat{EBH}\)                                 (2)

Từ (1) và (2) => \(\widehat{EBH}=\widehat{MAE}\)

Xét tam giác MAC vuông ở M có:

\(\widehat{MCA}+\widehat{MAC}=90^0\)

Xét tam giác ABC vuông ở A có:

\(\widehat{ABC}+\widehat{MCA}=90^0\)

=> \(\widehat{MAC}=\widehat{ABC}\)

Mà \(\widehat{ABC}=\widehat{MCA}\)( Do tam giác ABC vuông cân ở A )

=> \(\widehat{MAC}=\widehat{MCA}\)

=> Tam giác MAC vuông cân ở M

=> MA = MC

Mà BM = MC ( Do M trung điểm BC )

=> MA = MC = BM

Xét tam giác MBH và tam giác MAK có:

AM = BM ( cmt )

\(\widehat{EBH}=\widehat{MAE}\)( cmt )

AK = BH ( cmt )

=> Tam giác MBH = tam giác MAK ( c.g.c )

c) Vì tam giác MBH = tam giác MAK ( cmt )

=> \(\widehat{MKH}=\widehat{BHM}\)                                (3)

=> MK = MH

=> Tam giác MHK cân ở M                   (4)

Xét tam giác BHE vuông ở H có:

\(\widehat{BHM}+\widehat{MHK}=90^0\)( Hai góc phụ nhau )                   (5)

Thay (3) vào (5) ta được: \(\widehat{MKH}+\widehat{MHK}=90^0\)                           

=> Tam giác MHK vuông ở M                     (6) 

Từ (4) và (6) => Tam giác MHK vuông cân ở M

# Mik thấy nhiều bạn khó câu này nên mik lm #

8 tháng 2 2020

Chịu !!

4 tháng 4 2020

a) Ta có ^ABH + ^BAH = 90° Măt khác ^CAH + ^BAH = 90°
=> ^ABH = ^CAH
Xét ▲ABH và ▲CAK có:
^H = ^C (= 90°)
AB = AC (T.g ABC vuông cân)
^ABH = ^CAH (cmt)
=> △ABH = △CAK (c.h-g.n)
=> BH = AK
b) Ta có BH//CK (Cùng ┴ AK)
=>^HBM = ^MCK (SLT)(1)
Mặt khác ^MAE + ^AEM = 90°(2)
Và ^MCK + ^CEK = 90°(3)
Nhưng ^AEM = ^CEK (đ đ)(4)
Từ 2,3,4 => ^MAE = ^ECK (5)
Từ 1,5 => ^HBM = ^MAE
Ta lại có AM là trung tuyến của tam giác vuông ABC nên AM = BM =MC = 1/2 BC
Xét ▲MBH và ▲MAK có:
MB = AM (cmt); ^HBM = ^MAK(cmt); BH = AK (cma)
=> △MBH = △MAK (c.g.c)
c) Theo câu a, b ta có: AH = CK; MH = MK; AM = MC nên : ▲AMH = ▲ CMK (c.c.c)
=> ^AMH = ^CMK; mà ^AMH + ^HMC = 90 độ
=> ^CMK + ^HMC = 90° hay ^HMK = 90°
Tam giác HMK có MK = MH và ^HMK = 90° nên vuông cân tại M (đpcm).

Chúc bạn học tốt!

4 tháng 4 2020

Bạn tham khảo tại link này nhé

https://h.vn/hoi-dap/question/192990.html

Câu hỏi của Lê Thị Thùy Dung - Toán lớp 7 | Học trực tuyến

23 tháng 2 2018

bài này cũng khó phết đấy

19 tháng 6 2019

bài này mk nghĩ mấy tiếng còn không ra phải lên mạng mà xem

9 tháng 2 2016

 kẽ tam giác abc vuông cân tại A, điểm B trái , C phải sau đó lấy E đâu cx được, mình làm là lấy E ở giữa M và C, ko lấy vào trung điểm, còn lại vẽ tiếp theo bài ok.

đầu tiên chứng minh ABH^=CAK^: 

+Có: AHB^=90 độ => HAB^+HBA^=90 độ

+Có:  BAC^=HBA^+HAB^=90 độ=> BAH^+KAC^=HBA^+HAB^=> HBA^=KAC^

 chứng minh tg AHB =tg CEA(ch-gnh):AHB^=CKA^=90 độ ; AB=CA(GT) ; HBA^=KAC^(CMT)

=>AH=CK ( giải thích)

tg KEA có : AKC^=90 độ=> KEC^+KCE^=90 độ 

tg EMA có: AME^=90 độ =>MAE^+MEA^=90 độ

MEA^= KEC^(đối đỉnh)

3 điều trên suy ra KCE^=EAM^

CMĐ tg AHM =CKM(cgc): AH=CK;HAM^=KCM^;AM=MC(trung tuyến tg vuông)

=>HM=KM và AMH^=CMK^ => AHM^+HMC^=HMC^+CMK^ => AMC^=HMK^=90 độ

có HM=KM => tg HMK cân tại M ;HMK^=90 độ => tg HMK vuông cân tại M

duyệt đi olm !

8 tháng 2 2016

giúp mik với, mik rất cần