Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ABMC có
I là trung điểm chung của AM và BC
góc BAC=90 độ
Do dó: ABMC là hình chữ nhật
b:
\(AC=\sqrt{10^2-6^2}=8\left(cm\right)\)
\(S_{ABC}=\dfrac{1}{2}\cdot6\cdot8=3\cdot8=24\left(cm^2\right)\)
Xét ΔABC có AE/AB=AF/AC
nên EF//BC và EF=BC/2
=>EF=5cm
c: ΔHAC vuông tại H
mà HF là trung tuyến
nên HF=AC/2=IE
Xét tứ giác HIFE có
HI//FE
HF=IE
Do đo; HIFE là hình thang cân
Xét tứ giác ABMC có
D là trung điểm của BC
D là trung điểm của AM
Do đó: ABMC là hình bình hành
mà \(\widehat{BAC}=90^0\)
nên ABMC là hình chữ nhật
Hình bạn tự vẽ chắc dc rùi nhé mình chỉ giải thôi
Bài làm
a/ \(\Delta\)ABC cân tại A có AM là đường trung tuyến ứng với cạnh BC ( M là trung điểm BC )
Nên Am cũng là đường cao \(\Rightarrow\)AM \(⊥\)BC
vì M là trung điểm của BC \(\Rightarrow\)BM= MC = \(\frac{1}{2}BC=\frac{1}{2}.6=3cm\)
Xét tam giác AMB vuông tại M có:
AM2 + BM2 = AB2
AM2 + 32 = 52
AM2 + 9 = 25
AM2 = 25 - 9 =16
\(\Rightarrow\)AM= \(\sqrt{16}=4\)
Vậy S ABC = \(\frac{1}{2}AM.BC\)= \(\frac{1}{2}4.6=12\)
b/ Xét tứ giác AMCN có :
OA=OC (gt)
OM=ON ( N đối xứng với M qua O )
\(\Rightarrow\)Tứ giác AMCN là hình bình hành
Mà AM \(⊥\)MC ( chứng minh ở câu a ) \(\Rightarrow\)\(\widehat{AMC}\)= 90 0
Hình bình hành AMCN có \(\widehat{AMC}=90\)nên AMCN là hình chữ nhật
C/ Để AMNC là hình vuông thì AM phải bằng MC ( Vì theo lý thuyết hcn có 2 cạnh kề bằng nhau là hình vuông )
Nếu tam giác ABC vuông cân tại A thì có :
AM là đường trung tuyến ứng với cạnh huyền BC nên BM = AM = MC
Vậy để tứ giác AMCN là hình vuông thì tam giác ABC phải là tam giác vuông cân tại A
Chưa có ai trả lời câu hỏi này, hãy gửi một câu trả lời để giúp tran cong hoai giải bài toán này.
a: Xét tứ giác AEMF có góc AEM=góc AFM=góc FAE=90 độ
nên AEMF là hình chữ nhật
b: AC=8cm
\(S_{ABC}=\dfrac{6\cdot8}{2}=24\left(cm^2\right)\)
c: Đề sai rồi bạn
AM//NB mà
mình cũng chưa biết câu trả lời , khi nào có ai trả lời gửi qua cho mình với nhé ! ok
a, xét tứ giác AEHF có :
góc BAC = 90 do tam giác ABC vuông tại A (gt)
góc HEA = 90 do HE _|_ AB (Gt)
góc HFA = 90 do HF _|_ AC (gt)
=> tứ giác AEHF là hình chữ nhật (dh)
A B C E F I M
a) Xét tứ giác ABMC có
AI = IM
BI = IC
AM và BC cắt nhau tại I
\(\Rightarrow\)ABMC là hình bình hành
Lại có \(\widehat{BAC}=90^o\)
\(\Rightarrow\)ABMC là hình chữ nhật
b) ( AH là cái gì ?? hình như thiếu )
Xét tam giác ABC có
AE = EB
AF = FC
\(\Rightarrow\)EF là đường trung bình tam giác ABC
\(\Rightarrow EF=\frac{1}{2}BC=\frac{1}{2}\times10=5\left(cm\right)\)