Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.Tu gia thuyet suy ra:\(AC=20\left(cm\right)\)
Ta co:\(AH=\frac{AB.AC}{\sqrt{AB^2+AC^2}}=\frac{15.20}{\sqrt{15^2+20^2}}=20\left(cm\right)\)
\(BC=\sqrt{AB^2+AC^2}=\sqrt{225+400}=\sqrt{625}=25\left(cm\right)\)
b.Ta co:\(BH=\frac{AB^2}{BC}=\frac{225}{25}=9\left(cm\right)\)
\(CH=\frac{AC^2}{BC}=\frac{400}{25}=16\left(cm\right)\)
A B C H
a)Ta có: AB/AC=3/4 =)AC=4*AB/3=4*15/3=2
áp dụng đjnh lí Pytago tong tam giác vuông ABC, ta có:
BC^2=AB^2+AC^2
=15^2+20^2
= 225+400
=625
BC = căn 625=25
Vì ABC là tam giác vuông nên
áp dụng hệ thức lượng, ta dc
AB^2=HB*BC
hay 15^2=HB*25
HB=225/25=9
=)HC=25-9=16
và AH^2=HB*HC
=9*16=144
AH=căn 144=12
câu b là đoạn từ vì tam ABC đến HC=16 NHÉ BN
MK vẽ hình hơi xấu bn thông cảm hihi
vì tam giác ABC vuông tại A trung tuyến AD nên AD=DB=DC=1/2 BC=1/2 *32=16
Ta có: \(\frac{AH}{AD}=\frac{3}{4}\Leftrightarrow\frac{AH}{16}=\frac{3}{4}\)
\(\Rightarrow AH=\frac{3\cdot16}{4}=12\)
Lại có: \(AH^2=BH\cdot CH=\left(BD-HD\right)\left(DC+HD\right)\)\(=\left(16-HD\right)\left(16+HD\right)=16^2-HD^2\)
\(\Leftrightarrow12^2=16^2-HD^2\Rightarrow HD=\sqrt{16^2-12^2}=\sqrt{112}=4\sqrt{7}\)
Diện tích AHD=\(\frac{1}{2}\cdot AH\cdot HD=\frac{1}{2}\cdot12\cdot4\sqrt{7}=24\sqrt{7}\)
Bài 1
a) \(BC=125\Rightarrow BC^2=15625\)
\(\frac{AB}{AC}=\frac{3}{4}\Rightarrow\frac{AB}{3}=\frac{AC}{4}\)từ đây ta có \(\frac{AB^2}{9}=\frac{AC^2}{16}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có
\(\frac{AB^2}{9}=\frac{AC^2}{16}=\frac{AB^2+AC^2}{25}=\frac{BC^2}{25}=\frac{15625}{25}=625\)
\(\frac{AB^2}{9}=625\Rightarrow AB=75\)
\(\frac{AC^2}{16}=625\Rightarrow AC=100\)
Áp dụng hệ thức lượng trong tam giác vuông ta có
\(AB^2=BH\cdot BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{5625}{125}=45\)
\(AC^2=CH\cdot BC\Rightarrow CH=\frac{AC^2}{BC}=\frac{10000}{125}=80\)
b.c) làm tương tự cũng áp dụng HTL trong tam giác vuông
Bài 2
Hình bạn tự vẽ
Ta có \(EH\\ AC\left(EH\perp AB;AC\perp AB\right)\Rightarrow\frac{BE}{AB}=\frac{BH}{BC}\Rightarrow BE=\frac{AB\cdot BH}{BC}\Rightarrow BE^2=\frac{AB^2\cdot BH^2}{BC^2}\)
\(\Leftrightarrow BE^2=\frac{BH\cdot BC\cdot BH^2}{BC^2}=BH^3\)
Bài 3 Đề bài này không đủ dữ kiện tính S của ABC
a, 19.64 + 76.34
b, 35.12 + 65.13
c, 136.68 + 16.272
dấu chấm là dấu nhận nha. mong các bạn giúp đỡ mình
Vì \(\frac{AB}{AC}=\frac{3}{4}\Rightarrow AB=\frac{3}{4}AC\)
tam giác ABC vuông tại A nên theo định lí pytago ta có:
\(BC=\sqrt{AB^2+AC^2}=\sqrt{\frac{9}{16}AC^2+AC^2}=\sqrt{\frac{25}{16}AC^2}=\frac{5}{4}AC\\ \Rightarrow AC=\frac{4}{5}BC=\frac{4}{5}\cdot10=8\left(cm\right)\)
\(AB=\frac{3}{4}AC=\frac{3}{4}\cdot8=6\left(cm\right)\)
Vậy AB=6(cm), AC=8(cm)