K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(AB^2=AH^2+BH^2\)

Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được:

\(AC^2=AH^2+CH^2\)

hay \(CH^2=AC^2-AH^2\)

\(\Leftrightarrow AB^2+CH^2=AH^2+BH^2+AC^2-AH^2\)

\(\Leftrightarrow AB^2+CH^2=AC^2+BH^2\)(đpcm)

3 tháng 2 2019

-tự vẽ hình

a) Áp dụng định lý pytago vào tam giác vuông ABH, ta có:

BH2+AH2=AB2

=> AH2=AB2-BH2(1)

Áp dụng định lý pytago vào tam giác vuông AHC ta có: 

AH2+HC2=AC2

=> AH2=AC2-HC2(2)

Từ (1) và (2) => AB2-BH2=AC2-HC2 => AB2+HC2=AC2+BH2(chuyển vế đổi dấu)

b) Trên đoạn thẳng AB lấy điểm E => AE<AB, trên đoạn thẳng AC lấy điểm F => AF<AC

Áp dụng định lý pytago vào tam giác vuông EAF ta có: 

AE2+AF2=EF2

Áp dụng định lý pytago vào tam giác vuông ABC ta có: 

AB2+AC2=BC2

Mà AE<AB(cmt) => AE2<AB2, AF<AC(cmt) => AF2<AC2

=>AE2+AF2<AB2+AC2 hay EF2<BC2=> EF<BC

c) nghĩ chưa/ko ra >: 

-bn nào giỏi giải hộ =.=

a: \(AB^2-BH^2=AB^2\)

\(AC^2-CH^2=AH^2\)

Do đó: \(AB^2-BH^2=AC^2-CH^2\)

hay \(AB^2+CH^2=AC^2+BH^2\)

c: AH=4,8cm

BH=3,6cm

CH=6,4cm

7 tháng 2 2019

a,\(AB^2-BH^2=AC^2-CH^2\left(=AH^2\right)\Rightarrow AB^2+CH^2=AC^2+BH^2\)

b, \(\hept{\begin{cases}EF^2=AE^2+AF^2\\BC^2=AB^2+AC^2\\AE< AB,AF< AC\end{cases}}\Rightarrow EF^2< BC^2\Rightarrow EF< BC\)

c, Tính được BC = 10 cm

\(AH.BC=AB.AC\left(=2S_{ABC}\right)\Rightarrow AH.10=6.8\Rightarrow AH=4,8\left(cm\right)\)

Sau đó áp dụnh định lí Pitago vào tam giác AHB và AHC vuông tại H thì tính được:

BH = 3,6 cm và CH = 6,4 cm

AH
Akai Haruma
Giáo viên
29 tháng 8 2019

Lời giải:
a)

Xét tam giác $BHA$ và $BAC$ có:

$\widehat{B}$ chung

$\widehat{BHA}=\widehat{BAC}=90^0$

$\Rightarrow \triangle BHA\sim \triangle BAC(g.g)$

$\Rightarrow \frac{BH}{BA}=\frac{BH}{BA}\Rightarrow BA^2=BH.BC$

Hoàn toàn tương tự: $CA^2=CH.BC$

Do đó:

\(AB^2+CH^2-(AC^2+BH^2)=BH.BC+CH^2-CH.BC-BH^2\)

\(=BH(BC-BH)-CH(BC-CH)=BH.CH-CH.BC=0\)

\(\Rightarrow AB^2+CH^2=AC^2+BH^2\) (đpcm)

b)

Áp dụng định lý Pitago cho các tam giác vuông:

\(BC^2=AB^2+AC^2; EF^2=AE^2+AF^2\)

Mà $E\in AB; F\in AC\Rightarrow AB>AE; AC>AF$

$\Rightarrow AB^2+AC^2> AE^2+AF^2$

$\Rightarrow BC^2> EF^2\Rightarrow BC>EF$ (đpcm)

c)

Áp dụng định lý Pitago cho tam giác vuông $ABC$:

$BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10$ (cm)

Theo kết quả phần a:

$BH=\frac{AB^2}{BC}=\frac{6^2}{10}=3,6$ (cm)

$CH=\frac{AC^2}{BC}=\frac{8^2}{10}=6,4$ (cm)
Vậy.........

AH
Akai Haruma
Giáo viên
29 tháng 8 2019

Hình vẽ:

Hệ thức lượng trong tam giác vuông