Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi độ dài 3 cạnh của tam giác là : a, b, c. ( >0 ; cm )
Độ dài ba cạnh lần lượt tỉ lệ nghịch với 2; 3; 6 nên \(2a=3b=6c\)
và a > b > c
=> \(\frac{a}{\frac{1}{2}}=\frac{b}{\frac{1}{3}}=\frac{c}{\frac{1}{6}}\) và a - c = 6
Áp dụng dãy tỉ số bằng nhau: \(\frac{a}{\frac{1}{2}}=\frac{b}{\frac{1}{3}}=\frac{c}{\frac{1}{6}}=\frac{a-c}{\frac{1}{2}-\frac{1}{6}}=\frac{6}{\frac{1}{3}}=18\)
=> a = 9; b = 6; c = 3
=> chu vi của tam giác là: 9 + 6 + 3 = 18 cm
a: Gọi độ dài ba cạnh lần lượt là a,b,c
Theo đề, ta có: a/4=b/5=c/7 và a+b+c-2a=2
Áp dụng tính chất của DTBSN, ta được:
\(\dfrac{a}{4}=\dfrac{b}{5}=\dfrac{c}{7}=\dfrac{a+b+c-2a}{4+5+7-2\cdot4}=\dfrac{2}{8}=\dfrac{1}{4}\)
=>a=1; b=5/4; c=7/4
b: Gọi độ dài ba cạnh lần lượt là a,b,c
Theo đề, ta có:
a/2=b/4=c/5
Áp dụng tính chất của DTSBN, ta đc:
\(\dfrac{a}{2}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+b+c}{2+4+5}=\dfrac{33}{11}=3\)
=>a=6; b=12; c=15
Gọi độ dài 3 cạnh của tam giác lần lượt là x,y,z(x,y,z\(\in\)N*,cm)
biết chúng lần lượt tỉ lệ với 2;4;5 nên ta có:\(\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{x+y+z}{2+4+5}=\dfrac{121}{11}=11\\\dfrac{x}{2}=11\Rightarrow x=22\\ \dfrac{y}{4}=11\\ y=44\\ \dfrac{z}{5}=11\Rightarrow z=55 \)
Gọi độ dài các cạnh trong tam giác đó lần lượt là a,b,c (ĐK: a,b,c>0)
Độ dài ba cạnh của tam giác tỉ lệ với 2,4,5
=> \(\dfrac{a}{2}\)=\(\dfrac{b}{4}\)=\(\dfrac{c}{5}\)
Chu vi của tam giác là: a+b+c=121cm
ADTCDTSBN:
\(\dfrac{a}{2}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+b+c}{2+4+5}\)=\(\dfrac{121}{11}\)=11
=>a=22cm; b=44cm;c=55cm
lại bắt đầu nè tìm đường cao như bình thường rồi xét đường cao = cạnh => đó là các cạnh bla bla
Gọi chiều cao của tam giác lần lượt là a, b, c
các cạnh của tam giác lần lượt là x, y, z
Ta có: \(\frac{a}{3}=\frac{b}{5}=\frac{c}{6}\)
Đặt \(\frac{a}{3}=\frac{b}{5}=\frac{c}{6}=k\left(k\ne0\right)\)\(\Rightarrow a=3k\), \(b=5k\), \(c=6k\)
\(S_{\Delta}=\frac{1}{2}ax=\frac{1}{2}by=\frac{1}{2}cz\)\(\Rightarrow ax=by=cz\)
\(\Rightarrow3k.x=5k.y=6k.z\)\(\Rightarrow3x=5y=6z\)\(\Rightarrow\frac{3x}{30}=\frac{5y}{30}=\frac{6z}{30}=\frac{x}{10}=\frac{y}{6}=\frac{z}{5}=\frac{x+y+z}{10+6+5}=\frac{42}{21}=2\)
\(\Rightarrow x=2.10=20\), \(y=2.6=12\), \(z=2.5=10\)
Vậy độ dài 3 cạnh của tam giác lần lượt là 20 cm, 12 cm, 10 cm
Gọi 3 cạnh là a; b;c
=> a +b + c = 34
Ta có 3 cạnh tỉ lệ với 3;4;5 nên \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)
Theo tc tỉ lệ thức => \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{3+4+5}=\frac{34}{12}\)
=> a = \(\frac{34}{12}.3=8,5\) cm
b = \(\frac{34}{12}.4=\frac{34}{3}\) cm
c = \(\frac{34}{12}.5=\frac{85}{6}\) cm
ĐS:...
\(\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{6}=\dfrac{a+b+c}{3+5+6}=\dfrac{42}{14}=3\)
Do đó: a=9; b=15; c=18
gọi dộ dài của 3 cạnh của tam giác đó lần lượt là a,b,c.
theo bài ra ta có: a/4 = b/5 = c/6 và a+b+c=37.
theo tính chất dãy tỉ số bằng nhau ta có:
a/4 = b/5 = c/6 = a+b+c/4+5+6 = 37/15
=> a= 37/15 . 4 = 148/15
vậy cạnh nhỏ nhất của tam giác đó là 148/15(cm)
hình như đề sai hay sao ý. nếu đề đúng thì bài tớ giải trên sẽ đúng 100%
k chọn mình nha.