Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c)Vẽ Cx CC’. Gọi D là điểm đối xứng của A qua Cx
-Chứng minh được góc BAD vuông, CD = AC, AD = 2CC’
ta có: BD BC + CD
-BAD vuông tại A nên: AB2+AD2 = BD2
AB2 + AD2 >= (BC+CD)2
AB2 + 4CC’2 >= (BC+AC)2
4CC’2 >=(BC+AC)2 – AB2
Tương tự: 4AA’2 >= (AB+AC)2 – BC2
4BB’2 (AB+BC)2 – AC2
4(AA’2 + BB’2 + CC’2)>= (AB+BC+AC)2
Lời giải:
Ta thấy:
\(\left\{\begin{matrix} S_{HBC}=\frac{HA'.BC}{2}\\ S_{ABC}=\frac{AA'.BC}{2}\end{matrix}\right.\Rightarrow \frac{S_{HBC}}{S_{ABC}}=\frac{HA'}{AA'}(*)\)
\(\left\{\begin{matrix} S_{HAC}=\frac{HB'.AC}{2}\\ S_{ABC}=\frac{BB'.AC}{2}\end{matrix}\right.\Rightarrow \frac{S_{HAC}}{S_{ABC}}=\frac{HB'}{BB'}(**)\)
\(\left\{\begin{matrix} S_{HAB}=\frac{HC'.AB}{2}\\ S_{ABC}=\frac{CC'.AB}{2}\end{matrix}\right.\) \(\Rightarrow \frac{S_{HAB}}{S_{ABC}}=\frac{HC'}{CC'}(***)\)
Từ \((*); (**); (***)\Rightarrow \frac{HA'}{AA'}+\frac{HB'}{BB'}+\frac{HC'}{CC'}=\frac{S_{HBC}+S_{HCA}+S_{HAB}}{S_{ABC}}=\frac{S_{ABC}}{S_{ABC}}=1\)
Câu c) Các bạn tự vẽ hình nhé mình chỉ giải thôi:
Kẻ tia Cx vuông góc với CC'. Vẽ D là điểm đối xứng với A qua Cx. AD giao Cx tại I.
C/m C'AIC là hcn=> Góc BAD = 90 độ
=> CC'= AI
Có: D đối xứng với D qua Cx, I là giao điểm của AD và Cx
=> I là trung điểm của AD=> 2AI=AD
=> 2CC'=AD.
=> AB2+ AD2= BD2( Đlí PTG)
Ta có: Với 3 điểm B,C,D thì sẽ luôn có: (BD+CD)2>= BD2
Có: AB2+ AD2=BD2
=> (BD+CD)2>= AB2+ AD2
=> (BD+CD)2>= AB2+ (2CC')2
=> (BD+CD)2>= AB2+ 4CC'
=> (BD+CD)2- AB2>= 4CC'(1)
CMTT=> (AB+AC)2-BC2>= 4AA'(2)
và (AB+BC)2- AC2>= 4BB'(3)
Từ (1),(2) và (3) ta chứng minh đc:
(AB+BC+AC)2>= 4(AA'2+BB'2+CC'2)
=> GTNN bằng 4 <=> BC=AC; AC=AB; AB=BC<=> AB=BC=AC
=> GTNN là 4 khi tam giác ABC đều.
tự kẻ hình nha bạn
a, có \(\hept{\begin{cases}S_{HBC}=\frac{BC\cdot HA'}{2}\\S_{ABC}=\frac{BC\cdot AA'}{2}\end{cases}}\) \(\Rightarrow\frac{S_{HBC}}{S_{ABC}}=\frac{BC\cdot HA'}{2}\div\frac{BC\cdot AA'}{2}=\frac{HA'}{AA'}\)
có tương tự ta có \(\frac{S_{HAC}}{S_{ABC}}=\frac{HB'}{BB'}\) và \(\frac{S_{HAB}}{S_{ABC}}=\frac{HC'}{CC'}\)
\(\Rightarrow\frac{S_{HAC}+S_{HBC}+S_{HAB}}{S_{ABC}}=\frac{HA'}{AA'}+\frac{HB'}{BB'}+\frac{HC'}{CC'}\)
\(\Rightarrow\frac{HA'}{AA'}+\frac{HB'}{BB'}+\frac{HC'}{CC'}=1\)
để mjnh làm tiếp câu b
b, IN là pg của \(\widehat{AIB}\) (gt)
\(\Rightarrow\frac{NB}{IB}=\frac{NA}{AI}\) (tc)
\(\Rightarrow NB\cdot AI=IB\cdot NA\)
\(\Rightarrow NB\cdot AI\cdot CM=IB\cdot AN\cdot CM\left(1\right)\)
IM là pg của \(\widehat{AIC}\) (gt)
\(\Rightarrow\frac{AM}{AI}=\frac{MC}{IC}\)
\(\Rightarrow AM\cdot IC=AI\cdot CM\)
\(\Rightarrow AM\cdot IC\cdot NB=AI\cdot CM\cdot NB\left(2\right)\)
\(\left(1\right)\left(2\right)\Rightarrow AN\cdot BI\cdot CM=BN\cdot CI\cdot AM\)