K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
18 tháng 4 2020

a/ Trục Ox nhận \(\left(1;0\right)\) là 1 vtcp

Gọi đường thẳng cần tìm là d', do d' vuông góc \(Ox\Rightarrow\) d' nhận \(\left(1;0\right)\) là 1 vtpt và \(\left(0;1\right)\) là 1 vtcp

Phương trình tham số: \(\left\{{}\begin{matrix}x=-1\\y=2+t\end{matrix}\right.\)

Không tồn tại ptct của d'

Pt tổng quát: \(1\left(x+1\right)+0\left(y-2\right)=0\Leftrightarrow x+1=0\)

b/ Mình viết pt một cạnh, 1 đường cao và 1 đường trung tuyến, phần còn lại tương tự bạn tự làm:

\(\overrightarrow{AB}=\left(2;-5\right)\Rightarrow\) đường thẳng AB nhận \(\left(5;2\right)\) là 1 vtpt

Phương trình AB:

\(5\left(x-1\right)+2\left(y-4\right)=0\Leftrightarrow5x+2y-13=0\)

Gọi M là trung điểm BC \(\Rightarrow M\left(\frac{9}{2};\frac{1}{2}\right)\Rightarrow\overrightarrow{AM}=\left(\frac{7}{2};-\frac{7}{2}\right)=\frac{7}{2}\left(1;-1\right)\)

\(\Rightarrow\) Đường thẳng AM nhận \(\left(1;1\right)\) là 1 vtpt

Phương trình trung tuyến AM:

\(1\left(x-1\right)+1\left(y-4\right)=0\Leftrightarrow x+y-5=0\)

Gọi CH là đường cao tương ứng với AB, do CH vuông góc AB nên đường thẳng CH nhận \(\left(2;-5\right)\) là 1 vtpt

Phương trình CH:

\(2\left(x-6\right)-5\left(y-2\right)=0\Leftrightarrow2x-5y-2=0\)

19 tháng 4 2020

Cảm ơn bạn nhé❤️

30 tháng 3 2017

Đề bài thiếu :

Cho đường tròn (C) có phương trình: x2 + y2 - 4x + 8y - 5 = 0

Giải :

a) Tâm I(2 ; -4), R = 5

b) Đường tròn có phương trình: (x - 2 )2 + (y + 4)2 = 25

Thế tọa độ A(-1 ; 0) vào vế trái, ta có :

(-1- 2 )2 + (0 + 4)2 = 32 + 42 = 25

Vậy A(-1 ;0) là điểm thuộc đường tròn.

Áp dụng công thức tiếp tuyến (Xem sgk)

Ta được pt tiếp tuyến với đường tròn tai A là:

(-1 - 2)(x - 2) + (0 + 4)(y + 4) = 25 <=> 3x - 4y + 3 = 0

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

Phương pháp tọa độ trong mặt phẳng

20 tháng 5 2017

Ôn tập cuối năm môn Hình học

Ôn tập cuối năm môn Hình học

8 tháng 5 2016

Bạn không biết làm câu nào vậy

8 tháng 5 2016

a\(2x+3y-7=0\)

b\(3x-2y-4=0\)

c. Đường thẳng d có hệ số góc \(k=-\frac{2}{3}\), do đó d không tạo với trục hoành góc \(45^0\). Suy ra đường thẳng \(\Delta\) cần tìm, tạo với d  góc \(45^0\), không có phương vuông góc với Ox. Gọi \(l\) là hệ số góc của  \(\Delta\) , do góc giữa d và  \(\Delta\)  bằng  \(45^0\) nên ta có phương trình :

\(\left|\frac{l+\frac{2}{3}}{1-\frac{2l}{3}}\right|=1\Leftrightarrow\left|3l+2\right|=\left|3-2l\right|\)

Giải phương trình ta thu được :

\(l=\frac{1}{5}\) hoặc \(l=-5\)

* Với \(l=\frac{1}{5}\), ta được \(\Delta:x-5y+3=0\)

* Với \(l=-5\) ta được \(\Delta:5x+y-11=0\)

d. Đường thẳng t cần tìm có vecto pháp tuyến \(\overrightarrow{n}=\left(a;b\right);\left(a^2+b^2\ne0\right)\)

Do góc (t;d) = \(\alpha\) mà \(\cos\alpha=\frac{2}{\sqrt{13}}\) nên ta có phương trình :

\(\frac{\left|2a+3b\right|}{\sqrt{13}.\sqrt{a^2+b^2}}=\frac{2}{\sqrt{13}}\Leftrightarrow\left|2a+3b\right|=2\sqrt{a^2+b^2}\)

                              \(\Leftrightarrow b\left(12a+5b\right)=0\)

- Nếu \(b=0\) thì \(a\ne0\), tùy ý và do đó ta có đường thẳng \(t:x-2=0\)

- Nếu \(12a+5b=0\) do \(a^2+b^2\ne0\), có thể chọn \(a=5;b=-12\), do đó ta được đường thẳng :

\(5x-12y+2=0\)

 

 

 

 
19 tháng 5 2017

a) \(\cos A=-\dfrac{3}{5}\Rightarrow\widehat{A}\approx126^052'\)

b) \(AB:2x+y-1=0;AC=2x-y-3=0\)

c) Phân giác trong \(AD\) có phương trình : \(y+1=0\)