Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(BC=\sqrt{4^2+5^2}=\sqrt{41}\left(cm\right)\)
b: Xét ΔBAD có BA=BD
nên ΔBAD cân tại B
Suy ra: \(\widehat{BAD}=\widehat{BDA}\)
c: Ta có: \(\widehat{HAD}+\widehat{BDA}=90^0\)
\(\widehat{KAD}+\widehat{BAD}=90^0\)
mà \(\widehat{BAD}=\widehat{BDA}\)
nên AD là tia phân giác của góc HAC
Câu 1: Em tham khảo tại đây nhé.
Câu hỏi của trần thị minh hải - Toán lớp 7 - Học toán với OnlineMath
a: ΔBAD cân tại B
=>góc BAD=góc BDA
b: góc BAD+góc CAD=90 độ
góc BDA+góc HAD=90 độ
mà góc BAD=góc BDA
nên góc CAD=góc HAD
=>AD là phân giác của góc HAC
c: Xét ΔABC có AB<AC
nên góc ABC>góc ACB
d: Xét ΔAHD vuông tại H và ΔAKD vuông tại K có
AD chung
góc HAD=góc KAD
=>ΔAHD=ΔAKD
=>AH=AK
e: (AB+AC)^2=AB^2+AC^2+2*AB*AC
=BC^2+2*AH*BC<BC^2+2*AH*BC+AH^2=(BC+AH)^2
=>AB+AC<BC+AH
Giải thích các bước giải:
a. Xét ΔABD có AB=BD
⇒ΔABD cân B
⇒∠BAD=∠BDA
b. Do ∠BAD=∠BDA
mà ∠BAD=∠KDA ( so le trong )
⇒∠KDA=∠HDA
Xét ΔADK và ΔADH có ∠AKD=∠AHD=90 độ
∠KDA=∠HDA
AD chung
⇒ΔADK = ΔADH (ch-gn)
⇒∠KAD=∠HAD
⇒AD là phân giác ∠HAC
c. Do ΔADK = ΔADH
⇒AK=AH