K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2020

HOI KHO ^.^

17 tháng 11 2021

Khó quá

 

1 tháng 12 2016

Câu a) Áp dụng định lí Pytago với  tam giác ABC vuông tại A ( góc A=90).

Câu b) Chứng minh được tam giác BAC=TAM GIÁC DAC( trường hợp cạnh góc cạnh).

=>BC=DC(2 cạnh tương ứng)>

=>tam giác BDC cân tại C(định nghĩa). (1)

góc BAC=90độ(giả thiết)=> AC vuông góc BD=> AC là đường cao (định nghĩa). (2)

Từ (1) và (2)=> Ac là phân giác của góc BCD (định lí)=> góc BCA=góc DCA (định nghĩa).

chứng minh được: tam giác BEC= tam giác DEC (cạnh góc cạnh).

Câu c) Xét tam giác BDC cân (cmt) có: AC là đường cao (AC vuông góc với BD).

=> AC là đường trung tuyến (định lí) (3)       Có: CE/CE=6-2/6=2/3. (4)

Từ (3) và (4)=> E là trọng tâm tam giác BDC. => DE là đường trung tuyến của tam giác BDC.

Vậy DE đi qua trung điểm cạnh BC.

4 tháng 11 2016

Bạn ơi câu a hình như bạn ghi sai đề rồi, phải là chứng Minh DC bằng EB chứ. Bạn xem lại hộ mình nhé nếu có gì mình xin lỗi ha

4 tháng 11 2016

Nếu là đề sai theo mình là như vậy nè:

xét 2 Tam giác ABE và ACD có:

AE = AC (gt)

AB = AD(gt)

Â1 = Â2 (đối đỉnh)

suy ra Tam giác ABE = Tam giác ADC

Câu b

Vì 2 Tam giác ở câu a ta mới chứng Minh là bằng nhau nên ta có:

bạn tự vẽ hình và kí hiệu hình nhăn

ta có: góc D1 = góc B1 (2 góc tương ứng)

mà 2 góc này ở vị tí so le trong

suy ra BC // DE