K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2020

A B C I H D E O K

Cm:a) Xét tứ giác ADHE có \(\widehat{A}=\widehat{ADH}=\widehat{HEA}=90^0\)

=> ADHE là hình chữ nhật

đt DE cắt đt AH tại O

=> OA = OE

b) Ta có: OA = OE => t/giác AOE cân tại O => \(\widehat{OAE}=\widehat{OEA}\) hay \(\widehat{HAC}=\widehat{DEA}\)

Ta lại có: t/giác ABC vuông tại A => \(\widehat{B}+\widehat{C}=90^0\)

           t/giác AHC vuông tại A => \(\widehat{HAC}+\widehat{C}=90^0\)

=> \(\widehat{B}=\widehat{HAC}\) 

mà \(\widehat{HAC}=\widehat{DEA}\) 

=> \(\widehat{ABC}=\widehat{AED}\)(đpcm)

c) Gọi K là giao điểm của AI và DE

Xét t/giác ABC vuông tại A có AI là đường trung tuyến (BI = IC)

=> AI = IB = IC = 1/2BC

=> t/giác AIC cân tại I

=> \(\widehat{IAC}=\widehat{C}\) hay \(\widehat{KAE}=\widehat{C}\)

Ta có: \(\widehat{B}+\widehat{C}=90^0\) 

mà \(\widehat{B}=\widehat{KEA}\) (cmt); \(\widehat{C}=\widehat{KAE}\)(Cmt)

=> \(\widehat{KAE}+\widehat{KEA}=90^0\)

Xét t/giác AKE có \(\widehat{KAE}+\widehat{KEA}=90^0\) => \(\widehat{AKE}=90^0\)

=> AI \(\perp\)DE

5 tháng 1 2020

a) Xét tứ giác ADHE 

Ta có: góc A=900(gt)

góc ADH=900(gt)

góc EHD=900(gt)

=>tứ giác ADHE là hcn

=>AH=DE(đpcm)

4 tháng 7 2015

a) tam giác ABC cân tại A.

AH là đường cao= > đồng thời là trung tuyến, PHÂN GIÁC... => HB=HC

D,E là trung điểm => 4 đoạn DB=BH=HE=EC

tam giác DMB và tam giác ENC:

góc M= góc N=90

DB=EC

góc B=góc C 

=> tam giác DMB= tam giác ENC (ch.gn)

=> BM=NC

ta có: BM+AM=AB

NC+AN=AC

MÀ BM=NC. AB=AC => AM=AN

=> TAM GIÁC AMN CÂN TẠI A. AH LÀ PG => AH LÀ ĐƯỜNG CAO <=> AH VUÔNG GÓC MN

B) AH VUÔNG GÓC BC => MN//BC HAY MN//DE

TAM GIÁC DMB= TAM GIÁC ENC (CMT)=> GÓC MDB= GÓC NEC

MÀ MDB=NMD (SLT); GÓC NEC=MNE(SLT)

=> GÓC NMD= GÓC MNE

=> DENM LÀ HÌNH THANG CÂN

4 tháng 7 2015

HÌNH NÈ

31 tháng 7 2018

Trả lời 2 câu đầu nha, 2 câu sau tí nữa mình viết sau

a, \(\Delta ABC\)cân tại A có: AH là đường cao của \(\Delta ABC\)\(\Rightarrow\)AH là trung tuyến của \(\Delta ABC\)\(\Rightarrow BH=HC=\frac{BC}{2}=\frac{12}{2}=6\left(cm\right)\)

\(\Delta ABH\)có \(\widehat{AHB}=90^o\)

\(\Rightarrow AB^2=AH^2+BH^2\)(định lý Py-ta-go)

hay \(10^2=AH^2+6^2\)

       \(AH^2=64\)

       \(AH=8\left(cm\right)\)

b, \(\Delta ABC\)có: \(HD//AC\left(gt\right)\)

                           \(BH=HC\left(cmt\right)\)

\(\Rightarrow BD=DA\)

\(\Delta ABH\)vuông tại H có: HD là trung tuyến của \(\Delta ABH\)\(\Rightarrow HD=BD=DA=\frac{AB}{2}\)

\(\Delta BDH\)có: \(HD=BD\left(cmt\right)\)\(\Rightarrow\Delta BDH\)cân tại D

31 tháng 7 2018

c, Nối D với C, H với E

Ta có: \(HD=BD\left(cmt\right)\\ BD=CE\left(gt\right)\)\(\Rightarrow HD=CE\)

Tứ giác DHEC có: \(HD//EC\left(gt\right)\\ HD=EC\left(cmt\right)\)\(\Rightarrow\)DHEC là hình bình hành \(\Rightarrow\)2 đường chéo DE và HC cắt nhau tại trung điểm của mỗi đường \(\Rightarrow\)I là trung điểm của DE

d, 

6 tháng 10 2015

a/ Xét tam giác ABC vuông tại A:

có AM là đường trung tuyến => AM = BM = MC

Xét tam giác ABM có:

BM=AM

=> tam giác ABM cân tại M

có góc ABM bằng 60 độ

=> tam giác ABM đều.

Ta có: BC= BM+MC mà BM=MC=AB = 12 cm

=> BC= 24 cm

b/ xét tứ giác ADME, ta có:

góc A=D=E=90 độ

=> tứ giác ADME là hình chữ nhật

ta có: DE=AM ( đường chéo trong hình chữ nhật ADME)

mà AM=12 cm (=BA)

=> DE=12cm

c/ ta có:

AB vuông góc với AC

EM vuông góc với AC

=> AB song song EM

mà BM=MC (AM là đường trung tuyến);

=> E là trung điểm AC (đường trung bình);

=> EM = 1/2 AB

=> MN=AB

xét tứ giác ABMN có

AB//MN (cmt)

MN=AB(cmt)

=> tứ giác ABMN là hình bình hành

có BN và AM là 2 đường chéo

mà 2 đường chéo cắt nhau tại trung điểm của mỗi đường

mà O là trung điểm AM (đường chéo hình chữ nhât ADME);

=> 3 điểm B,O,N thẳng hàng

7 tháng 3 2021

khó vãi

7 tháng 3 2021

A C H D E M N B O K